Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T01:51:23.675Z Has data issue: false hasContentIssue false

Implosion symmetry and burn efficiency in ICF

Published online by Cambridge University Press:  09 March 2009

Stefano Atzeni
Affiliation:
Associazione EURATOM-ENEA sulla Fusione, Centro Ricerche Energia Frascati, C.P. 65, 00044 Frascati (Rome), Italy

Abstract

The effect of long-wavelength irradiation nonuniformities on the performance of singleshell, reactor targets is investigated by means of 2-D numerical simulations. The stages of target collapse, hot-spot formation, ignition, and burn are illustrated. Evidence is shown for the occurrence of the Rayleigh–Taylor instability during target stagnation. It is then shown that the sensitivity of a given family of targets to the nonuniformities of the driving pressure critically depend on the 1–D ignition margin and on the spark convergence ratio of the target. The tolerable levels of nonuniformity as a function of the perturbation mode number are determined, for selected targets, by means of a parametric numerical study.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andronov, V. A. et al. 1979 JETP Lett. 29, 56.Google Scholar
Atzeni, S. 1986 Comput. Phys. Commun. 43, 107.Google Scholar
Atzeni, S. 1987 Plasma Phys. Controlled Fusion 29, 1535.CrossRefGoogle Scholar
Atzeni, S. 1990a Laser Part. Beams 8, 227.CrossRefGoogle Scholar
Atzeni, S. 1990b Europhys. Lett. 11, 639.CrossRefGoogle Scholar
Atzeni, S. & Caruso, A. 1981 Phys. Lett. 85A, 345.CrossRefGoogle Scholar
Atzeni, S. & Caruso, A. 1983 Nucl. Fusion 23, 1092.CrossRefGoogle Scholar
Atzeni, S. & Guerrieri, A. 1989 Europhys. Conf. Abs. 13B, 865.Google Scholar
Atzeni, S. & Guerrieri, A. 1991 Laser Part. Beams 9, 443.CrossRefGoogle Scholar
Bodner, S. E. 1981 J. Fusion Energy 1, 221.CrossRefGoogle Scholar
Bodner, S. E., Emery, M. H. & Gardner, J. H. 1987 Plasma Phys. Controlled Fusion 29, 1333.CrossRefGoogle Scholar
Evans, R. G., Bennet, A. J. & Pert, G. J. 1982 J. Phys. D 15, 1673.CrossRefGoogle Scholar
Freeman, J. R., Clauser, M. J. & Thompson, S. L. 1977 Nucl. Fusion 17, 223.CrossRefGoogle Scholar
Hattori, R, Takabe, H. & Mima, K. 1986 Phys. Fluids 29, 1719.CrossRefGoogle Scholar
Kidder, R. E. 1979 Nucl. Fusion 19, 223.CrossRefGoogle Scholar
Kilkenny, J. D. et al. 1989 In Plasma Physics and Controlled Fusion Research 1988,Proceedings of the 12th International Conference, Nice(IAEA, Vienna), Vol. 3, p. 29.Google Scholar
Lindl, J. D. 1989 In Inertial Confinement Fusion, edited by Caruso, A. & Sindoni, E. (Editrice Compositori, Bologna), pp. 595, 617.Google Scholar
McCrory, R. L. & Verdon, C. P. 1989 In Inertial Confinement Fusion, edited by Caruso, A. & Sindoni, E. (Editrice Compositori, Bologna), p. 83.Google Scholar
Mead, W. C.Lindl, J. D. 1976 Bull. Am. Phys. Soc. 21, 1102.Google Scholar
Nuckolls, J. et al. 1972 Nature 239, 139.Google Scholar
Roberts, P. D. et al. 1980 J. Phys. D 13, 1957.CrossRefGoogle Scholar
Verdon, C. P. et al. 1985 LLE Review 23, 125 (Laboratory for Laser Energetics Quarterly Report April– June Rep. DOE/DP 40200–05).Google Scholar
Youngs, D. L. 1984 Physica 12D, 45.Google Scholar