Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T15:01:53.877Z Has data issue: false hasContentIssue false

Hydrodynamics of plasma and shock waves generated by the high-power GARPUN KrF laser

Published online by Cambridge University Press:  01 March 2004

V.D. ZVORYKIN
Affiliation:
P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
V.G. BAKAEV
Affiliation:
P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
I.G. LEBO
Affiliation:
Moscow Institute of Radioengineering, Electronics and Automation (Technical University), Moscow, Russia
G.V. SYCHUGOV
Affiliation:
P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia

Abstract

The electron-beam-pumped KrF laser installation GARPUN with a 100-J output energy and long 100-ns pulse duration has been used to investigate laser–target interactions in a broad range of laser intensities for small (150 μm) and large (∼1 cm) irradiated spots. For higher intensities (up to 5 × 1012 W/cm2), a conical shock wave was generated in condensed matter by megabar pressure at the ablation front. It propagated with a supersonic velocity in a quasisteady manner together with a conical shock wave inside a target. Evaporated target material moving with a velocity of ∼50 km/s formed an extended plasma corona of ∼5 mm length with an electron temperature of ∼100 eV. Emission spectra of plasma have been investigated in the extreme UV range 120–250 Å. For lower intensities (108–109 W/cm2), planar shock waves in normal density air were produced with initial velocities up to 4 km/s in the forward direction and 7 km/s in the opposite direction toward incident radiation. In rarefied air, the forward shock wave kept velocities constant whereas the backward ones were accelerated up to 30 km/s. Planar compression waves in transparent condensed matter were also demonstrated propagating with sonic velocity.

Type
International Conference on the Frontiers of Plasma Physics and Technology
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aglitskiy, Y., Karasik, M., Serlin, V., Pawley, C.J., Schmitt, A.J., Obenschain, S.P., Mostovych, A.N., Gardner, J.H. & Metzler, N. (2002). Direct observation of mass oscillations due to ablative Richtmyer-Meshkov instability and feedout in planar plastic targets. Phys. Plasmas 9, 22642276.CrossRefGoogle Scholar
Basov, N.G., Bakaev, V.G., Bogdanovskii, A.V., Vadkovskii, A.D., Grigor'yants, E.A., Zvorykin, V.D., Metreveli, G.E., Suchkov, A.F. & Sychugov, G.V. (1993). E-beam pumped “GARPUN” broadband KrF laser with ∼1GW pulsed lasing power. J. Sov. Laser Res. 14, 326359.CrossRefGoogle Scholar
Dahmani, F. & Kerdjia, T. (1991). Measurements and laser-wavelength Dependence of mass-ablation rate and ablation pressure in planar Layered targets. Laser & Particle Beams 9, 769778.CrossRefGoogle Scholar
Danilychev, V.A. & Zvorykin, V.D. (1984). Experimental investigation of radiation-gasdynamic processes that develop under the action of high-power λ=10.6 μm laser pulses on a solid in a gas. J. Sov. Laser Res. 5, 667715.Google Scholar
Divall, E.J., Edwards, C.B., Hirst, G.J., Hooker, C.J., Kidd, A.K., Lister, J.M.D., Mathumo, R., Ross, I.N., Shaw, M.J., Toner, W.T., Visser, A.P. & Wyborn, B.E. (1996). Titania—a 1020 Wcm−2 ultraviolet laser. J. Mod. Opt. 43, 10251033.Google Scholar
Harris, D.B., Allen, G.R., Berggren, R.R., Cartwright, D.C., Czuchlewski, S.J., Figueira, J.F., Hanson, D.E., Hauer, A., Jones, J.E., Kurnit, N.A., Leland, W.T., Mack, J.M., McDonald, T.E., McLeod, J., Rose, E.A., Sorem, M., Sullivan, J.A. & Watt, R.G. (1993). Strength and weakness of KrF lasers for inertial confinement fusion applications learned from the AURORA laser. Laser and Particle Beams 11, 323329.CrossRefGoogle Scholar
Kadano, T., Yoshida, M., Takahashi, E., Matsushima, I., Owadano, Y., Ozaki, N., Fujita, K., Nakano, M., Tanaka, K.A., Takenaka, H. & Kondo, K. (2000). Reflected shock experiments on the equation-of-state properties of liquid deuterium at 100–600 Gpa (1–6 Mbar). Phys. Rev. Lett. 45, 10461048.Google Scholar
Key, M.H., Toner, W.T., Goldsack, T.J., Kilkenny, J.D., Veats, S.A., Cunningham, P.F. & Lewis, C.L.C. (1983). A study of ablation by laser irradiation of plane targets at wavelengths 1.05, 0.53, and 0.35 μm. Phys. Fluids 26, 20112026.Google Scholar
Levashov, V.E., Zubarev, E.N., Fedorenko, A.I., Kondratenko, V.V., Poltseva, O.V., Yulin, S.A., Struk, I.I. & Vinogradov, A.V. (1994). High throughput and resolution compact spectrograph for the 124–250 A range based on MoSi2-Si sliced multilayer grating. Opt. Comms. 109, 14.Google Scholar
Ng, A., Pasini, D., CelliersP., Parfeniuk, D., Da Silva, L, &Kwan, J. (1984). Ablation scaling in steady-state ablation dominated by inverse-bremsstrahlung absorption. Appl. Phys. Lett. 45, 10461048.CrossRefGoogle Scholar
Obenschain, S.P., Bodner, S.E., Colombant, D., Gerber, K., Lehmberg, R.H., McLean, E.A., Mostovich, A.N., Pronko, M.S., Pawley, C.J., Schmitt, A.J., Sethian, J.D., Serlin, V., Stamper, J.A., Sullivan, C.A., Dahlburg, J.P., Gardner, J.H., Chan, Y., Deniz, A.V., Hardgrove, J., Lehecka, T. & Klapisch, M. (1996). The Nike KrF laser facility: Performance and initial target experiments. Phys. Plasmas 3, 20982107.CrossRefGoogle Scholar
Owadano, Y., Okuda, I., Matsumoto, Y., Matsushima, I., Koyama, K., Tomie, T. & Yano, M. (1993). Performance of the ASHURA KrF laser and its upgrading plan. Laser & Particle Beams 11, 347351.CrossRefGoogle Scholar
Owadano, Y., Okuda, I., Matsumoto, Y., Matsushima, I., Takahashi, E., Yashiro, H., Miura, E. & Tomie, T. (1996). Super-ASHURA KrF laser program at ETL. Fusion Energy 3, 215221. IAEA, Montreal, Canada.Google Scholar
Pawley, C.J., Gerber, K., Lehmberg, R.H., McLean, E.A., Mostovich, A.N., Obenschain, S.P., Sethian, J.D., Serlin, V., Stamper, J.A., Sullivan, C.A., Bodner, S.E., Colombant, D., Dahlburg, J.P, Schmitt, A.J., Gardner, J.H., Brown, C., Seely, J.F., Lehecha, T., Aglitskiy, Y., Deniz, A.V., Chan, Y., Metzler, N. & Klapisch, M. (1997). Measurements of laser-imprinted perturbations and Rayleigh-Taylor growth with Nike KrF laser. Phys. Plasmas 4, 19691977.CrossRefGoogle Scholar
Raizer, Yu.P. (1965). Heating of a gas under the action of high-power light pulse. Sov. Phys. JETP 21, 10091018.Google Scholar
Sedov, L.I. (1959). Similarity and Dimensional Methodes in Mechanics. New York: Academic Press.
Shaw, M.J., Bailly-Salins, R., Edwards, C.B., Harvey, E.C., Hirst, G.J., Hooker, C.J., Key, M.H., Kidd, A.K., Lister, J.M.D. & Ross, I.N. (1993). Development of high-performance KrF and Raman laser facilities for inertial confinement fusion and other applications. Laser and Particle Beams 11, 331346.CrossRefGoogle Scholar
Sullivan, J.A., Allen, G.R., Berggren, R.R., Czuchlewski, S.J., Harris, D.B., Jones, J.E., Krohn, B.J., Kurnit, N.A., Leland, W.T., Mansfield, C., McLeod, J., McCowan, A.W., Pendergrass, J.H., Rose, E.A., Rosocha, L.A. & Thomas, V.A. (1993). KrF amplifies design issues and application to inertial confinement fusion system design. Laser and Particle Beams 11, 359383.CrossRefGoogle Scholar
Weaver, J.L., Feldman, U., Seely, J.F., Holland, G., Serlin, V., Klapisch, M., Columbant, D. & Mostovich, A. (2001). Absolutely calibrated, time-resolved measurements of soft x rays using transmission grating spectrometers at the Nike laser facility. Phys. Plasmas 8, 52305238.CrossRefGoogle Scholar
Zvorykin, V.D. & Lebo, I.G. (1999). Laser and target experiments on KrF GARPUN laser installation at FIAN. Laser & Particle Beams 17, 6988.Google Scholar
Zvorykin, V.D. & Lebo, I.G. (2000). Application of a high-power KrF laser for the study of supersonic gas flows and the development of hydrodynamic instabilities in layered media. Quant. Electron. 30, 540544.CrossRefGoogle Scholar
Zvorykin, V.D., Bakaev, V.G., Korol', V.Yu., Lebo, I.G., Rozanov, V.B. & Sychugov, G.V. (2000). Effects of anomalous high penetration rate of high-power KrF laser radiation throughout the solid matter and shock-induced graphite-diamond phase transformation. Proc. SPIE 3885, 212222.CrossRefGoogle Scholar