Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T04:49:16.322Z Has data issue: false hasContentIssue false

Hotter electrons and ions from nano-structured surfaces

Published online by Cambridge University Press:  06 May 2008

S. Bagchi
Affiliation:
Tata Institute of Fundamental Research, Colaba, Mumbai, India
P. Prem Kiran
Affiliation:
Tata Institute of Fundamental Research, Colaba, Mumbai, India
M.K. Bhuyan
Affiliation:
Tata Institute of Fundamental Research, Colaba, Mumbai, India
S. Bose
Affiliation:
Tata Institute of Fundamental Research, Colaba, Mumbai, India
P. Ayyub
Affiliation:
Tata Institute of Fundamental Research, Colaba, Mumbai, India
M. Krishnamurthy
Affiliation:
Tata Institute of Fundamental Research, Colaba, Mumbai, India
G. Ravindra Kumar*
Affiliation:
Tata Institute of Fundamental Research, Colaba, Mumbai, India
*
Address correspondence and reprint requests to: G. Ravindra Kumar: Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai-400005, India. E-mail: [email protected]

Abstract

The impact of nano-structured surfaces on particle generation from ultrashort intense laser produced plasmas is presented over an intensity range of 1015–1017 Wcm−2. The nano-structured surface evidently produces hotter plasma but does not lead to the generation of hotter ions, a counterintuitive result based on present understanding of plasma expansion mechanism. Although the total ion flux and energy is more in the case of structured surfaces, the average energy of the projectiles is found to be lower than that from polished surfaces. The nano-structured surface shows preferential enhancement of lower energy ions and an intensity dependent divergence of the ejected particles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiranoff, F., Fedosejevs, R., Schmalz, R.F., Sigel, R. & Tung, Y. (1985). Laser-driven shock-wave studies using optical shadowgraphy. Phys. Rev. A 32, 35353546.Google Scholar
Ayyub, P., Chandra, R., Taneja, P., Sharma, A.K. & Pinto, R. (2001). Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Appl. Phys. A 73, 6773.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Hora, H., Jablonski, S. & Wolowski, J. (2006). Studies on laser-driven generation of fast high-density plasma blocks for fast ignition. Laser Part. Beams 24, 249254.CrossRefGoogle Scholar
Brambrink, E., Roth, M., Blazevic, A. & Schlegel, T. (2006). Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part. Beams 24, 163168.Google Scholar
Brunel, F. (1987). Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 5255.Google Scholar
Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.Google Scholar
Ditmire, T., Tisch, J.W.G., Springate, E., Mason, M.B., Smith, R.A., Marangos, J. & Hutchinson, M.H.R. (1997). High-energy ions produced in explosions of superheated atomic clusters. Nature 386, 5456.Google Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Glinec, Y., Faure, J., Fuchs, J., Szymanowski, H., Oelfke, U. & Malka, V. (2006). Radiotherapy with laser-plasma accelerators: Monte Carlo simulation of dose deposited by an experimental quasi monoenergetic electron beam. Med. Phys. 33, 155162.CrossRefGoogle Scholar
Kruer, W.L. (1988). The Physics of Laser Plasma Interactions. New York: Addison-Wesley.Google Scholar
Kupersztych, J., Monchicourt, P. & Raynaud, M. (2001). Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission. Phys. Rev. Lett. 86, 51805183.Google Scholar
Laska, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krasa, J., Krousky, E., Parys, P., Pfeifer, M., Rohlena, K., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J. & Wolowski, J. (2007 a). Factor sinfluencing parameters of laser ion sources. Laser Part. Beams 25, 199205.Google Scholar
Laska, L., Badziak, J., Gammino, S., Jungwirth, K., Kasperczuk, A., Krasa, J., Krousky, E., Kubes, P., Parys, P., Pfeifer, M., Pisarczyk, T., Rohlena, K., Rosinski, M., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J., Velyhan, A. & Wolowski, J. (2007 b). The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams. Laser Part. Beams 25, 549556.Google Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.Google Scholar
Mackinnon, A.J., Borghesi, M., Hatchett, S., Key, M.H., Patel, P.K., Campbell, H., Schiavi, A., Snavley, R., Wilks, S.C. & Willi, O. (2001). Effect of Plasma Scale Length on Multi-MeV Proton Production by Intense Laser Pulses. Phys. Rev. Lett. 86, 17691772.Google Scholar
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V.Yu. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 41084111.Google Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.Google Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle ScholarPubMed
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion accelerationexperiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Rajeev, P.P., Taneja, P., Ayyub, P., Sandhu, A.S. & Kumar, G.R. (2003). Metal nanoplasmas as bright sources of hard x-ray pulses. Phys. Rev. Lett. 90, 115002.CrossRefGoogle ScholarPubMed
Rajeev, P.P., Kahaly, S., Bagchi, S., Bose, S., Kiran, P.P., Ayyub, P. & Kumar, G.R. (2006). Role of prepulses in the interaction of intense, ultrashort lasers with “structured” surfaces. J. Phys. IV France 133, 533536.CrossRefGoogle Scholar
Schnurer, M., Ter-Avetisyan, S., Busch, S., Risse, E., Kalachnikov, M.P., Sandner, W. & Nickles, P. (2005). Ion acceleration with ultrafast laser driven water droplets. Laser Part. Beams 23, 337343.Google Scholar
Shalaev, V.M., Douketus, C., Haslett, T., Stuckless, T. & Moskovits, M. (1996). Two-photon electron emission from smooth and rough metal films in the threshold region. Phys. Rev. B 53, 1119311206.Google Scholar
Umstadter, D. (2001). Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas 8, 17741785.CrossRefGoogle Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542549.Google Scholar
Wolowski, J., Badziak, J., Czarnecka, A., Parys, P., Pisarek, M., Rosinski, M., Turan, R. & Yerci, S. (2007). Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites. Laser Part. Beams 25, 6569.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.Google Scholar
Zhidkov, A., Sasaki, A. & Tajima, T. (2000). Emission of MeV multiple-charged ions from metallic foils irradiated with an ultrashort laser pulse. Phys. Rev. E 61, R2224R2227.CrossRefGoogle Scholar
Ziegler, J.F. (2004). SRIM-2003, nuclear instruments and methods in physics research section b: beam interactions with materials and atoms 219–220, 1027–1036; CASINO 2.0 http://www.gel.usherbrooke.ca/casino/index.html.Google Scholar