Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T02:20:45.088Z Has data issue: false hasContentIssue false

Hot electron transport and heating in dense plasma core by hollow guiding

Published online by Cambridge University Press:  14 October 2010

C.T. Zhou*
Affiliation:
Institute of Applied Physics and Computational Mathematics, People's Republic of China Center for Applied Physics and Technology, Peking University, People's Republic of China Institute for Fusion Theory and Simulation, Zhejiang University, People's Republic of China
S.Z. Wu
Affiliation:
Institute of Applied Physics and Computational Mathematics, People's Republic of China
H.B. Cai
Affiliation:
Institute of Applied Physics and Computational Mathematics, People's Republic of China Center for Applied Physics and Technology, Peking University, People's Republic of China
M. Chen
Affiliation:
Institute of Applied Physics and Computational Mathematics, People's Republic of China
L.H. Cao
Affiliation:
Institute of Applied Physics and Computational Mathematics, People's Republic of China Center for Applied Physics and Technology, Peking University, People's Republic of China
X.G. Wang
Affiliation:
Institute for Fusion Theory and Simulation, Zhejiang University, People's Republic of China
L.Y. Chew
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
X.T. He
Affiliation:
Institute of Applied Physics and Computational Mathematics, People's Republic of China Center for Applied Physics and Technology, Peking University, People's Republic of China Institute for Fusion Theory and Simulation, Zhejiang University, People's Republic of China
*
Address correspondence and reprint requests to: C.T. Zhou, Institute of Applied Physics and Computational Mathematics, Beijing 100094, Peoples Republic of China. E-mail: [email protected]

Abstract

A new scheme for cone-hollow-assisted fast ignition in inertial fusion is investigated. A hollow is attached to the tip of a conventional gold cone. The transport and heating of the high-current electrons propagating from the cone tip to the compressed fuel core along the hollow is investigated by two-dimensional hybrid simulation. Different hollow geometry sizes are examinized. It is shown that with proper hollow guiding, hot electrons can be collimated between the inner-walls of the hollow by the large interface magnetic fields appearing on the inner surface. When the beam electrons further propagate into the dense region, they are scattered into the gold hollow through collisions with the fuel electrons and ions. The resulting magnetic potential around the hollow then bends beam electrons along the gold hollow to reach the dense core.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. & Meyer-Tar-Vehn, J. (2003). Inertial Fusion - Beam Plasma Interaction, hydrodynamic, Dense Plasma Physics. Oxford: Clarendon Press.Google Scholar
Birdsall, C.K. & Langdon, A.B. (1985). Plasma Physics via Computer Simulation. New York: McGraw-Hill.Google Scholar
Cai, H.B., Mima, K., Zhou, W.M., Jozaki, T., Nagatomo, H., Sunahara, A. & Mason, R.J. (2009). Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition. Phys. Rev. Lett. 102, 245001.Google Scholar
Campbell, R.B., Kodama, R., Mehlhorn, T.A., Tanaka, K.A. & Welch, D.R. (2005). Simulation of heating-compressed fast-ignition cores by petawatt laser-generated electrons. Phys. Rev. Lett. 94, 055001.CrossRefGoogle ScholarPubMed
Davies, J.R. (2003). Electric and magnetic field generation and target heating by laser-generated fast electrons, Phys. Rev. E68, 056404.Google Scholar
Evans, R.G. (2006). Modelling short pulse, high intensity laser plasma interactions. High Energy Density Phys. 2, 3547.Google Scholar
Galloudeec, R.N., d'Humiéres, E., Cho, B.I., Osterholz, J., Sentoku, Y. & Ditmire, T. (2009). Guiding, focusing, and collimated transport of hot electrons in a canal in the extended tip of cone targets. Phys. Rev. Lett. 102, 205003.Google Scholar
Gibbon, P. (2005). Short Pulse Laser Interactions with Matter - An Introduction. Imperial College Press.Google Scholar
Glinsky, M. (1995). Regimes of suprathemal electron transport. Phys. Plasmas. 2, 27962806.CrossRefGoogle Scholar
Green, J.S., Lancaster, K.L., Akli, K.U., Gregory, C.D., Beg, F.N., Chen, S.N., Clark, D., Freeman, R.R., Hawkes, S., Hernandez-Gomez, C., Habara, H., Heathcote, R., Hey, D.S., Highbarger, K., Key, M.H., Kodma, R., Krushelnick, K., Musgrave, I., Nakamura, H., Nakatsutsumi, M., Patel, N., Stephens, R., Storm, M., Tampo, M., Theobald, W., Van Woerkom, L., Weber, R.L., Wei, M.S., Woolsey, N.C. & Norreys, P.A. (2007). Surface heating of wire plasmas using laser-irradiated cone geometries. Nat. Phys. 3, 853856.CrossRefGoogle Scholar
Green, J.S., Ovchinnikov, V.M., Evans, R.G., Akli, K.U., Azechi, H., Beg, F.N., Bellei, C., Freeman, R.R., Habara, H., Heathcote, R., Key, M.H., King, J.A., Lancaster, K.L., Lopes, N.C., Ma, T., Mackinnon, A.J., Markey, K., Mcphee, A., Najmudin, Z., Nilson, P., Onofrei, R., Stephens, R., Takeda, K., Tanaka, K.A., Theobald, W., Tanimoto, T., Waugh, J., Wan Woerkom, L., Woolsey, N.C., Zepf, M., Davies, J.R. & Norreys, P.A. (2008). Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas. Phys. Rev. Lett. 100, 015003.Google Scholar
Haines, M.G., Wei, M.S., Beg, F.N. & Stephens, R.B. (2009). Hot-electron temperature and laser-light absorption in fast ignition. Phys. Rev. Lett. 102, 045008.CrossRefGoogle ScholarPubMed
Häuser, T., Scheid, W. & Hora, H. (1994). Acceleration of electrons by intense laser pulses in vacuum. Phys. Letters. A186, 189192.CrossRefGoogle Scholar
Hoffmann, H.H. (2008). Laser interaction with matter and heavy ion fusion. Laser and Part. Beams 26, 509510.Google Scholar
Honrubia, J.J., Kaluza, M., Schreiber, J., Tsakiris, G.D. & Meyer-Tar-Vehn, J. (2005). Laser-driven fast-electron transport in preheated foil targets. Phys. Plasmas 12, 052708.CrossRefGoogle Scholar
Hora, H.H. (1988). Particle acceleration by superposition of frequency-controlled laser pulses. Nature 333, 337338.CrossRefGoogle Scholar
Hora, H. (2000). Laser Plasma Physics: Forces and the Nonlinearity Principle. Bellingham, WA: Spie Press.Google Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser and Part. Beams 27, 207222.Google Scholar
Kar, S., Robinson, A.P.L., Carroll, D.C., Lundh, O., Markey, K., MCkenna, P., Norreys, P. & Zepf, M. (2009). Guidng of relativistic electron beams in solid targets by resistively controlled magnetic fields. Phys. Rev. Lett. 102, 055001.Google Scholar
Kemp, A.J., Cohen, B.I. & Divol, L. (2010). Integrated kinetic simulation of laser-plasma interactions, fast-electron generation, and transport in fast ignition. Phys. Plasmas 17, 056702.CrossRefGoogle Scholar
King, J., Akli, K., Freeman, R.R., Green, J., Hatchett, S.P., Hey, D., Jamangi, P., Norreys, M.H., Patel, P.K., Phillips, T., Stephen, R.B., Stephens, R.B., Theobald, W., Town, R.J., Vanwoerkom, L., Zhang, B. & Beg, F.N. (2009). Studies on the transport of high intensity laser-generated hot electrons in cone coupled wire targets. Phys. Plasmas 16, 020701.Google Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature (London) 412, 798802.Google Scholar
Lancaster, K.L., Green, J.S., Hey, D.S., Akli, K.U., Davies, J.R., Clarke, R.J., Freeman, R.R., Habara, H., Key, M.H., Kodama, R., Krushelnick, K., Murphy, C.D., Nakatsutsumi, M., Simpson, P., Stephens, R., Stoeckl, C., Yabuuchi, T., Zepf, M. & Norreys, P.A. (2007). Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5 × 1020 W cm−2. Phys. Rev. Lett. 98, 125002.CrossRefGoogle Scholar
MacPhee, A.G., Divol, L., Kemp, A.J., Akli, K.U., Beg, F.N., Chen, C.D., Chen, H., Hey, D.S., Fedosejevs, R.J., Freeman, R.R., Henesian, M., Key, M.H., Le Papa, S., Link, A., Ma, T., Mackinnon, A.J., Ovchinnikov, V.M., Patel, P.K., Phillips, T.W., Stehens, R.B., Tabak, M., Town, R., Tsui, Y.Y., Van Woerkom, L.D., Wei, M.S. & Wilks, S.C. (2010). Limitation on prepulse level for cone-guided fast-ignition inertial confinement fusion. Phys. Rev. Lett. 104, 055002.Google Scholar
Malka, V., Faure, J., Gauduel, Y.A., Lefebvre, E., Rousse, A. & Phuoc, K.T. (2008). Principles and applications of compact laser-plasma accelerators. Nat. Phys. 4, 447453.Google Scholar
Nakajima, K. (2008). Towards a table-top free-electron laser. Nat. Physics 4, 92.CrossRefGoogle Scholar
Robinson, A.P.L. & Sherlock, M. (2007). Magnetic collimation of fast electrons produced by ultraintense laser irradiation by structuring the target composition. Phys. Plasmas 14, 083105.Google Scholar
Solodov, A.A., Anderson, K.S., Betti, R., Gotcheva, V., Myatt, J., Delettrez, J.A., Skupsky, S., Theobald, W. & Stoeckl, C. (2009). Integrated simulations of implosion, electron transport, and heating for direct-drive fast-ignition targets. Phys. Plasmas 16, 056309.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Igntion and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Welch, D.R., Rose, D.V., Oliver, B.V. & Clark, R.E. (2001). Simulation techniques for heavy ion fusion chamber transport. Nucl. Instrum. Meth. Res. A464, 134139.CrossRefGoogle Scholar
Wilks, S.C. & Kruer, W.L. (2000). Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE J. Quantum Electron 33, 19541969.Google Scholar
Wu, S.Z., Zhou, C.T. & Zhu, S.P. (2010). Effect of density profile on beam control of intense laser-generated fast electrons. Phys. Plasmas 17, 063103.CrossRefGoogle Scholar
Yu, M.Y., Yu, W., Chen, Z.Y.Zhang, J., Yin, Y., Cao, L.H., Lu, P.X. & Xu, Z.Z. (2003). Electron acceleration by an intense short-pulse laser in underdense plasma. Phys. Plasmas 10, 24682474.CrossRefGoogle Scholar
Yu, W., Cao, L., Yu, M.Y., Cai, H., Xu, H., Yang, X., Lei, A., Tanaka, K.A. & Kodama, R. (2009). Plasma channeling by multiple short-pulse lasers. Laser and Part. Beams 27, 109114.Google Scholar
Zhou, C.T., He, X.T. & Yu, M.Y. (2008). Laser-produced energetic electron transport in overdense plasmas by wire guiding. Appl. Phys. Lett. 92, 151502.CrossRefGoogle Scholar
Zhou, C.T., He, X.T., Cao, J.M., Wang, X.G. & Wu, S.Z. (2009). Reducing current loss of laser-driven fast electron beams propagating in solid-density plasmas. J. Appl. Phys. 105, 105, 083311.Google Scholar
Zhou, C.T., Wang, X.G., Ruan, S.C., Wu, S.Z., Chew, L.Y., Yu, M.Y. & He, X.T. (2010a). Dynamics of relativistic electrons propagating in a funnel-guided target. Phys. Plasmas 17, 083103.Google Scholar
Zhou, C.T., Chew, L.Y. & He, X.T. (2010b). Propagation of energetic electrons in a hollow plasma fiber. Appl. Phys. Lett. 97, 051502.CrossRefGoogle Scholar