Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T20:08:40.647Z Has data issue: false hasContentIssue false

High-intensity laser-plasma interaction studies employing laser-driven proton probes

Published online by Cambridge University Press:  30 August 2005

M. BORGHESI
Affiliation:
School of Mathematics and Physics, The Queen's University of Belfast, United Kingdom
P. AUDEBERT
Affiliation:
Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique-CNRS, Palaiseau, France
S.V. BULANOV
Affiliation:
Advanced Photon Research Center, Kansai Research Establishment, JAERI, Kyoto, Japan
T. COWAN
Affiliation:
Nevada Terawatt Facilities, University of Nevada, Reno
J. FUCHS
Affiliation:
Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique-CNRS, Palaiseau, France
J.C. GAUTHIER
Affiliation:
CELIA, Université Bordeaux I Talence, France
A.J. MACKINNON
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
P.K. PATEL
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
G. PRETZLER
Affiliation:
Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universitaat, Düsseldorf, Germany
L. ROMAGNANI
Affiliation:
School of Mathematics and Physics, The Queen's University of Belfast, United Kingdom
A. SCHIAVI
Affiliation:
Dipartimento di Energetica, Universita' di Roma “La Sapienza”, Roma, Italy
T. TONCIAN
Affiliation:
Dipartimento di Energetica, Universita' di Roma “La Sapienza”, Roma, Italy
O. WILLI
Affiliation:
Dipartimento di Energetica, Universita' di Roma “La Sapienza”, Roma, Italy

Abstract

Due to their particular properties (low emittance, short duration, and large number density), the beams of multi-MeV protons generated during the interaction of ultraintense (I > 1019 W/cm2) short pulses with thin solid targets are suited for use as a particle probe in laser-plasma experiments. When traversing a sample, the proton density distribution is, in general, affected by collisional stopping, scattering and deflections via electromagnetic fields, and each of these effects can be used for diagnostic purposes. In particular, in the limit of very thin targets, the proton beams represent a valuable diagnostic tool for the detection of quasi-static electromagnetic fields. The proton imaging and deflectometry techniques employ these beams, in a point-projection imaging scheme, as an easily synchronizable diagnostic tool in laser- plasma interactions, with high temporal and spatial resolution. By providing diagnostic access to electro-magnetic field distributions in dense plasmas, this novel diagnostics opens up to investigation a whole new range of unexplored phenomena. Several transient processes were investigated employing this technique, via the detection of the associated electric fields. Examples provided in this paper include the detection of pressure-gradient electric field in extended plasmas, and the study of the electrostatic fields associated to the emission of MeV proton beams in high-intensity laser-foil interactions.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was presented at the 28th ECLIM conference in Rome, Italy.

References

REFERENCES

Borghesi, M., Campbell, D.H., Schiavi, A., Haines, M.G., Willi, O., Mackinnon, A.J., Patel, P., Gizzi, L.A., Galimberti, M., Clarke, R.J., Pegoraro, F., Ruhl, H. & Bulanov, S.V. (2002a). Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9, 22142218.Google Scholar
Borghesi, M., Bulanov, S.V., Campbell, D.H., Clarke, R.J., Esirkepov, T.Zh., Galimberti, M., Gizzi, L.A., Mackinnon A.J., Naumova, N., Pegoraro, F., Ruhl, H., Schiavi, A., &Willi, O. (2002b). Macroscopic evidence of soliton formation in multiterawatt laser plasma interaction. Phys. Rev. Lett. 88,135002.
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Mackinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002c). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275; Erratum, 20, 641.Google Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O.,Galimberti, M., Gizzi, L.A., Mackinnon, A.J., Snavely, R.D., Patel, P., Hatchett, S., Key, M.,, &Nazarov, W. (2002d). Propagation issues and energetic particle production in laser–plasma interactions at intensities exceeding 1019 W/cm2. Laser Part. Beams 20, 3138.Google Scholar
Borghesi, M., Romagnani, L., Schiavi, A., Campbell, D.H., Willi, O., Mackinnon, A.J., Galimberti, M., Gizzi, L.A., Clarke, R.J. & Hawkes, S. (2003). Measurement of highly transient electrical charging following high-intensity laser-solid interaction. App. Phys. Lett. 82, 15291532.CrossRefGoogle Scholar
Borghesi, M., Mackinnon, A.J., Campbell, D.H., Hicks, D.G., Kar, S. Patel, P.K., Price, D., Romagnani, L., Schiavi, A., &Willi, O. (2004). Multi-MeV proton source investigations in ultraintense laser-foil interactions. Phys. Rev. Lett. 92, 055003.CrossRefGoogle Scholar
Clark, E.L, Krushelnick, K., Davies, J.R., Zepf, M., Tatarakis, M., Beg, F.N., Machacek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000). Energetic Heavy-Ion and Proton Generation from Ultraintense Laser-Plasma Interactions with Solids. Phys. Rev. Lett. 84, 670673.CrossRefGoogle Scholar
Cowan, T.E. Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernández, J., Gauthier, J.C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pépin, H., &Renard-Legalloudec, N. (2004). Ultralow Emittance, Multi-MeV Proton Beams from a Laser Virtual-Cathode Plasma Accelerator. Phys. Rev. Lett. 92, 204801.CrossRefGoogle Scholar
Davies, J.R. (2002). Proton acceleration by fast electrons in laser–solid interactions. Laser Part. Beams 20, 243253.Google Scholar
Deutsch, C. (2003). Transport of megaelectron volt protons for fast ignition. Laser Part. Beams 21, 3335.CrossRefGoogle Scholar
Faenov, A., Pikuz, T., Magunov, A., Batani, D., Lucchini, G., Canova, F. & Piselli, M. (2004). Bright X-ray point source based on a commercial potable 40 ps Nd:YAG laser system. Laser Part. Beams 22, 373379.Google Scholar
Issac, R., Wirthig, J., Brunetti, E., Vieux, G., Ersfeld, B., et al. (2003). Bright source of Kα and continuum X-rays by heating Kr clusters using a femtosecond laser. Laser Part. Beams 21, 535540.Google Scholar
Koehler, A.M. (1968). Proton radiography. Science 160, 303.CrossRefGoogle Scholar
Mackinnon, A.J., Patel, P.K., Town, R.J., Edwards, M.J., Phillips, T., Lerner, S.C., Price, D.W., Hicks, D., Key, M.H., Hatchett, S., Wilks, S.C., Borghesi, Kar, S., Romagnani, L., Toncian, T., Pretzler, G., Willi, O., Koenig, M., Martinolli, E., Lepape, S., Benuzzi-Mounaix, A., Audebert, P., Gauthier, J.C., King, J., Snavely, R., Freeman, R.R., &Boehlly, T. (2004). Proton radiography as an electromagnetic field and density perturbation diagnostic. Rev. Sci. Inst. 75, 35313536.CrossRefGoogle Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle Scholar
Passoni, M. & Lontano, M. (2004). One-dimensional model of the electrostatic ion acceleration in the ultraintense laser–solid interaction. Laser Part. Beams 22, 163169.Google Scholar
Pegoraro, F., Atzeni, S., Borghesi, M., Bulanov, S., Esirkepov, T., Honrubia, J., Kato, Y., Khoroskhov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high power laser plasma interaction and their application. Laser Part. Beams 22, 1924.Google Scholar
Pommier, L. & Lefebvre, E. (2003). Simulations of energetic proton emission in laser–plasma interaction. Laser Part. Beams 21, 573581.Google Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E.,Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D., &Campbell, E.M. (2000). Intense high-energy proton beams from petawatt laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D. Mackinnon, A.J., &Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542546.CrossRefGoogle Scholar