Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T19:36:27.009Z Has data issue: false hasContentIssue false

High stability, single frequency, 300 mJ, 130 ps laser pulse generation based on stimulated Brillouin scattering pulse compression

Published online by Cambridge University Press:  14 November 2014

Xuehua Zhu
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
Zhiwei Lu*
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
Yulei Wang*
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
*
Address correspondence and reprint requests to: Z. W. Lu, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, P. O. Box 3031, Harbin 150080, China. E-mail: [email protected]; or to Y. L. Wang, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, P. O. Box 3031, Harbin 150080, China. E-mail: [email protected]
Address correspondence and reprint requests to: Z. W. Lu, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, P. O. Box 3031, Harbin 150080, China. E-mail: [email protected]; or to Y. L. Wang, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, P. O. Box 3031, Harbin 150080, China. E-mail: [email protected]

Abstract

We obtained the output of single frequency laser pulses with an average pulse-width of 136 ps and the minimum of 123 ps based on stimulated Brillouin scattering pulse compression pumped by an 8 ns-pulse-width, 1064 nm-wavelength Q-switched Nd:YAG laser. The pulse-width stability of the output is about 4.1% while that of the pump pulses is about 1.1%, the highest energy conversion efficiency is about 85%, and the single pulse energy is above 300 mJ.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Ai, Q.K., Chen, M., Xu, Y., Chang, L., Chen, L.Y., Li, G., Yang, J.H. & Ma, Y.F. (2012). Picosecond Nd: YLF five-passes laser amplifier with 20 mJ pulse energy. Laser Phys. 22, 11691172.Google Scholar
Dai, T.Y., Ju, Y.L., Yao, B.Q., Shen, Y.J., Wang, W. & Wang, Y.Z. (2012). Single-frequency, Q-switched Ho: YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho:YAG laser. Optics Letters 37, 18501852.Google Scholar
Gao, W., Liu, S.N., Bi, Y.F. & Hu, X.B. (2013). Narrowband flat-top Brillouin gain spectrum and low distortion amplification based on pump phase modulation. Laser Part. Beams 31, 515521.CrossRefGoogle Scholar
Guo, Q., Lu, Z.W. & Wang, Y.L. (2010). Highly efficient Brillouin amplification of strong Stokes seed. Appl. Phys. Lett. 96, 221107.CrossRefGoogle Scholar
Guo, X.Y., Hasi, W.L.J., Zhong, Z.M., Jin, C.Y., Lin, D.Y., He, W.M. & Lu, Z.W. (2012). Research on the SBS mediums used in high peak power laser system and their selection principle. Laser Part. Beams 30, 525530.Google Scholar
Hasi, W., Zhong, Z., Qiao, Z., Guo, X., Li, X., Lin, D., He, W., Fan, R. & , Z. (2012). The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering. Opt. Commun. 285, 35413544.CrossRefGoogle Scholar
Hasi, W.L.J., Guo, X.Y., Lu, H.H., Fu, M.L., Gong, S., Geng, X.Z., Lu, Z.W., Lin, D.Y. & He, W.M. (2009). Investigation on effect of medium temperature upon SBS and SBS optical limiting. Laser Part. Beams 27, 733.CrossRefGoogle Scholar
Hon, D.T. (1980). Pulse compression by stimulated Brillouin scattering. Opt. Lett. 5, 3.CrossRefGoogle ScholarPubMed
Kong, H.J., Shin, J.S., Yoon, J.W. & Beak, D.H. (2009). Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors. Laser Part. Beams 27, 179.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Beak, D.H., Shin, J.S., Lee, S.K. & Lee, D.W. (2007). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25.Google Scholar
Kuwahara, K., Takahashi, E., Matsumoto, Y., Kato, S. & Y., O. (2000). Short-pulse generation by saturated KrF laser amplification of a steep Stokes pulse produced by two-step stimulated Brillouin scattering. J. Opt. Soc. Am. B 17, 5.Google Scholar
Marcus, G., Pearl, S. & Pasmanik, G. (2008). Stimulated Brillouin scattering pulse compression to 175 ps in a fused quartz at 1064 nm. J. Appl. Phys. 103, 103105.Google Scholar
Neshev, D., Velchev, I., Majewski, W.A., Hogervorst, W. & Ubachs, W. (1999). SBS pulse compression to 200 ps in a compact single-cell setup. Appl. Phys. B 68, 671.CrossRefGoogle Scholar
Omatsu, T., Kong, H.J., Park, S., Cha, S., Yoshida, H., Tsubakimoto, K., Fujita, H., Miyanaga, N., Nakatsuka, M., Wang, Y., Lu, Z., Zheng, Z., Zhang, Y., Kalal, M., Slezak, O., Ashihara, M., Yoshino, T., Hayashi, K., Tokizane, Y., Okida, M., Miyamoto, K., Toyoda, K., Grabar, A.A., Kabir, M.M., Oishi, Y., Suzuki, H., Kannari, F., Schaefer, C., Pandiri, K.R., Katsuragawa, M., Wang, Y.L., Lu, Z.W., Wang, S.Y., Zheng, Z.X., He, W.M., Lin, D.Y., Hasi, W.L.J., Guo, X.Y., Lu, H.H., Fu, M.L., Gong, S., Geng, X.Z., Sharma, R.P., Sharma, P., Rajput, S., Bhardwaj, A.K., Zhu, C.Y. & Gao, W. (2012). The Current Trends in SBS and phase conjugation. Laser Part. Beams 30, 117174.Google Scholar
Schellhorn, M. (2010). High-energy, in-band pumped Q-switched Ho3+: LuliF4 2 µm laser. Opt. lett. 35, 26092611.Google Scholar
Siebold, M., Hein, J., Wandt, C., Klingebiel, S., Krausz, F. & Karsch, S. (2008). High-energy, diode-pumped, nanosecond Yb : YAG MOPA system. Opt.Expr. 16, 36743679.CrossRefGoogle ScholarPubMed
Su, L.M., Wang, Y.G., Liu, J., Zheng, L.H., Su, L.B. & Xu, J. (2012). Double-wall carbon nanotube absorber for passively mode-locked Yb3 + :Sc2SiO5 laser. Laser Phys. Lett. 9, 120125.Google Scholar
Velchev, I., Neshev, D., Hogervorst, W. & Ubachs, W. (1999). Pulse Compression to the sub-photon lifetime region by half-cycle gain in transient stimulated Brillouin scattering. IEEE J. Quan. Electron. 35, 5.CrossRefGoogle Scholar
Velchev, I. & Ubachs, W. (2005). Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors. Phys. Rev. A 71.Google Scholar
Xu, X., Feng, C. & Diels, J.C. (2014). Optimizing sub-ns pulse compression for high energy application. Opt. Expr. 22, 13904–15.Google Scholar
Yoshida, H., Fujita, H., Nakatsuka, M., Ueda, T. & Fujinoki, A. (2007). Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength. Laser Part. Beams 25.CrossRefGoogle Scholar
Yoshida, H., Hatae, T., Fujita, H., Nakatsuka, M. & Kitamura, S. (2009). A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength. Opt.Expr. 17, 1365413662.Google Scholar