Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T05:23:59.907Z Has data issue: false hasContentIssue false

High energy electron radiography scheme with high spatial and temporal resolution in three dimension based on a e-LINAC

Published online by Cambridge University Press:  11 April 2016

Y. Zhao*
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China Xi'an Jiaotong University, Xi'an 710049, China
Z. Zhang
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
W. Gai
Affiliation:
Argonne National Laboratory, Argonne, IL 60439, USA Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Y. Du
Affiliation:
Department of Engineering Physics, Tsinghua University, Beijing 100084, China
S. Cao
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
J. Qiu
Affiliation:
Argonne National Laboratory, Argonne, IL 60439, USA
Q. Zhao
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
R. Cheng
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
X. Zhou
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
J. Ren
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
W. Huang
Affiliation:
Argonne National Laboratory, Argonne, IL 60439, USA
C. Tang
Affiliation:
Argonne National Laboratory, Argonne, IL 60439, USA
H. Xu
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
W. Zhan
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
*
Address correspondence and reprint requests to: Y. Zhao, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and Argonne National Laboratory, Argonne, IL 60439, USA. E-mail: [email protected], [email protected]

Abstract

We present a scheme of electron beam radiography to dynamically diagnose the high energy density (HED) matter in three orthogonal directions simultaneously based on electron Linear Accelerator. The dynamic target information such as, its profile and density could be obtained through imaging the scattered electron beam passing through the target. Using an electron bunch train with flexible time structure, a very high temporal evolution could be achieved. In this proposed scheme, it is possible to obtain 1010 frames/second in one experimental event, and the temporal resolution can go up to 1 ps, spatial resolution to 1 µm. Successful demonstration of this concept will have a major impact for both future inertial confinement fusion science and HED physics research.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. & Meyer-Ter-vehn, J. (2004). The Physics of Inertial Fusion. USA: Oxford University Press. ISBN: 978-0-19-856264-1.Google Scholar
Beg, F.N., Krushelnick, K., Lichtsteiner, P., Meakins, A., Kennedy, A., Kajumba, N., Burt, G. & Dangor, A.E. (2003). Table-top X-pinch for x-ray radiography. Appl. Phys. Lett. 82, 46024604.Google Scholar
Beg, F.N., Stephens, R.B., Xu, H.-W., Haas, D., Eddinger, S., Tynan, G., Shipton, E., Debono, B. & Wagshal, K. (2006). Compact X-pinch based point x-ray source for phase contrast imaging of inertial confinement fusion capsules. Appl. Phys. Lett. 89, 101502, 3.Google Scholar
Dewald, E.L., Milovich, J.L., Michel, P., Landen, O.L., Kline, J.L., Glenn, S., Jones, O., Kalantar, D.H., Pak, A., Robey, H.F., Kyrala, G.A., Divol, L., Benedetti, L.R., Holder, J., Widmann, K., Moore, A., Schneider, M.B., Döppner, T., Tommasini, R., Bradley, D.K., Bell, P., Ehrlich, B., Thomas, C.A., Shaw, M., Widmayer, C., Callahan, D.A., Meezan, N.B., Town, R.P.J., Hamza, A., Dzenitis, B., Nikroo, A., Moreno, K., Van Wonterghem, B., Mackinnon, A.J., Glenzer, S.H., Macgowan, B.J., Kilkenny, J.D., Edwards, M.J., Atherton, L.J. & Moses, E.I. (2013). Early-time symmetry tuning in the presence of cross-beam energy transfer in ICF Experiments on the National Ignition Facility. PRL 111, 235001, 5.Google Scholar
Edwards, R.D., Sinclair, M.A., Goldsack, T.J., Krushelnick, K., Beg, F.N., Clark, E.L., Dangor, A.E., Najmudin, Z., Tatarakis, M., Walton, B., Zepf, M., Ledingham, K.W.D., Spencer, I., Norreys, P.A., Clarke, R.J., Kodama, R., Toyama, Y. & Tampo, M. (2002). Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography. Appl. Phys. Lett. 80, 21292131.Google Scholar
Fraser, J., Sheffield, R., Gray, E., Giles, P., Springer, R. & Loebs., V. (1987). Photocathodes in accelerator applications. Proc. of the 1987 IEEE Particle Accelerator Conf., pp. 17051709. Washington, DC: IEEE.Google Scholar
Hora, H., Malekynia, B., Ghoranneviss, M., Miley, G.H. & He, X. (2008). Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Lett. 93, 011101, 3.Google Scholar
King, N.S.P., Ables, E., Adams, K., Alrick, K.R., Amann, J.F., Balzar, S., Barnes, P.D. Jr., Crow, M.L., Cushing, S.B., Eddleman, J.C., Fife, T.T., Flores, P., Fujino, D., Gallegos, R.A., Gray, N.T., Hartouni, E.P., Hogan, G.E., Holmes, V.H., Jaramillo, S.A., Knudsson, J.N., London, R.K., Lopez, R.R., Mcdonald, T.E., Mcclelland, J.B., Merrill, F.E., Morley, K.B., Morris, C.L., Naivar, F.J., Parker, E.L., Park, H.S., Pazuchanics, P.D., Pillai, C., Riedel, C.M., Sarracino, J.S., Shelley, F.E. JR., Stacy, H.L., Takala, B.E., Thompson, R., Tucker, H.E., Yates, G.J., Ziock, H.-J.& Zumbro, J.D. (1999). An 800-MeV proton radiography facility for dynamic experiments. NIM A 424, 8491.Google Scholar
Li, C.K., Séguin, F.H., Rygg, J.R., Frenje, J.A., Manuel, M., Petrasso, R.D., Betti, R., Delettrez, J., Knauer, J.P., Marshall, F., Meyerhofer, D.D., Shvarts, D., Smalyuk, V.A., Stoeckl, C., Landen, O.L., Town, R.P.J., Back, C.A. & Kilkenny, J.D. (2008). Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion. Phys. Rev. Lett. 100, 225001, 4.Google Scholar
Merrill, F.E. (2015). Imaging with penetrating radiation for the study of small dynamic physical processes. Laser Part. Beams 33, 425431.Google Scholar
Merrill, F.E., Campos, E., Espinoza, C., Hogan, G., Hollander, B., Lopez, J., Mariam, F.G., Morley, D., Morris, C.L., Murray, M., Saunders, A., Schwartz, C. & Thompson, T.N. (2011). Magnifying lens for 800 MeV proton radiography. Rev. Sci. Instrum. 82, 103709, 6.CrossRefGoogle ScholarPubMed
Merrill, F.E., Golubev, A.A., Mariam, F.G., Turtikov, V.I., Varentsov, D. & HEDGEHOB, COLLABORATION (2009). Proton microscopy at fair. AIP Conf. Proc. 1195, 667670.Google Scholar
Merrill, F., Harmon, F., Hunt, A., Mariam, F., Morley, K., Morris, C., Saunders, A. & Schwartz, C. (2007). Electron radiography. Nucl. Instrum. Methods Phys. Res. Sec. B 261, 382386.Google Scholar
Power, J.G. (2010). Overview of photoinjectors. AIP Conf. Proc. 1299, 2028.CrossRefGoogle Scholar
Roth, M., Jung, D., Falk, K., Guler, N., Deppert, O., Devlin, M., Favalli, A., Fernandez, J., Gautier, D., Geissel, M., Haight, R., Hamilton, C.E., Hegelich, B.M., Johnson, R.P., Merrill, F., Schaumann, G., Schoenberg, K., Schollmeier, M., Shimada, T., Taddeucci, T., Tybo, J.L., Wagner, F., Wender, S.A., Wilde, C.H. & Wurden, G.A. (2013). Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110, 044802, 5.Google Scholar
Rygg, J.R., Jones, O.S., Field, J.E., Barrios, M.A., Benedetti, L.R., Collins, G.W., Eder, D.C., Edwards, M.J., Kline, J.L., Kroll, J.J., Landen, O.L., Ma, T., Pak, A., Peterson, J.L., Raman, K., Town, R.P.J. & Bradley, D.K. (2014). 2D X-Ray radiography of imploding capsules at the national ignition facility. Phys. Rev. Lett. 112, 195001, 5.Google Scholar
Schumaker, W., Nakanii, N., Mcguffey, C., Zulick, C., Chyvkov, V., Dollar, F., Habara, H., Kalintchenko, G., Maksimchuk, A., Tanaka, K.A., Thomas, A.G.R., Yanovsky, V. & Krushelnick, K. (2013). Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions. Phys. Rev. Lett. 110, 015003, 5.Google Scholar
Sheng, L.N., Zhao, Y.T., Yang, G.J., Wei, T., Jiang, X.G., Zhou, X.M., Cheng, R., Yan, Y., Li, P., Yang, J.C., Yuan, Y.J., Xia, J.W. & Xiao, G.Q. (2014). Heavy-ion radiography facility at the Institute of Modern Physics. Laser Part. Beams 32, 651655.CrossRefGoogle Scholar
Tahir, N.A., Stöhlker, T.H., Shutov, A., Lomonosov, I.V., Fortov, V.E., French, M., Nettelmann, N., Redmer, R., Piriz, A.R., Deutsch, C., Zhao, Y., Zhang, P., Xu, H., Xiao, G. & Zhan, W. (2010). Ultrahigh compression of water using intense heavy ion beams: Laboratory planetary physics. New J. Phys. 12, 073022, 17.Google Scholar
Tsai, Y.S. & Whitis, Van (1966). Thick-target bremsstrahlung and target considerations for secondary-particle production by electrons. Phys. Rev. 149, 12481257.CrossRefGoogle Scholar
Varentsov, D., Bogdanov, A., Demidov, V.S., Golubev, A.A., Kantsyrev, A., Lang, P.M., Nikolaev, D.N., Markov, N., Natale, F., Shestov, L., Simoniello, P., Smirnov, G.N. & Durante, M. (2013). First biological images with high-energy proton microscopy. Physica Medica 29, 208213.Google Scholar
Zhao, Q., Cao, S., Cheng, R., Shen, X., Zhang, Z., Zhao, Y., Gai, W. & Du, Y. (2015). High energy electron radiography experiment research based on picosencond pulse width bunch. Proc. of LINAC2014, p. 4. MOPP015. doi: 10.13140/2.1.2180.4327.Google Scholar
Zhao, Y., Cheng, R., Wang, Y,, Zhou, X., Lei, Y., Sun, Y., Xu, G., Ren, J., Sheng, L., Zhang, Z. & Xiao, G. (2014). High energy density physics research at IMP, Lanzhou, China. High Power Laser Sci. Eng., 2, e39, 5. doi: 10.1017/hpl.2014.44.Google Scholar