Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T20:32:58.309Z Has data issue: false hasContentIssue false

High energy density and beam induced stress related issues in solid graphite Super-FRS fast extraction targets

Published online by Cambridge University Press:  16 June 2008

N.A. Tahir*
Affiliation:
Gesellschaft für Schwerionenforschung Darmstadt, Darmstadt, Germany
V.V. Kim
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
A.V. Matvechev
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
A.V. Ostrik
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
A.V. Shutov
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
I.V. Lomonosov
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
A.R. Piriz
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
J.J. Lopez Cela
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
D.H.H. Hoffmann
Affiliation:
Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
*
Address correspondence and reprint request to: N.A. Tahir, Gesellschaft für Schwerionenforschung Darmstadt, Planckstrasse 1, 64291 Darmstadt, Germany. E-mail: [email protected]

Abstract

Survival of the production target in successive experiments (with a repetition rate of 1 Hz) over an extended period of time is one of the key problems encountered in designing the Super-FRS (Superconducting Fragment Separator) at the future Facility forAntiprotons and Ion Research (FAIR). Because of the difficulties involved in construction of a liquid jet metal target, it is highly desirable to employ a solid production target at the Super-FRS. However, with the high beam intensities that will be available at the FAIR, the production target may be destroyed in a single experiment due to high specific energy deposition by the beam in the target material. The level of specific energy deposition can be reduced to an acceptable value by increasing the beam focal spot area. However, the spot size is limited by requirements of achieving good isotope resolution and sufficient transmission of the secondary beam through the system. The resolving power of the fragment separator is inversely proportional to the X-dimension of the focal spot whereas the transmission depends on Y-dimension only. It has been previously shown [Tahir et al., 2005c] that an elliptic focal spot with appropriate dimensions, will fulfill the above two conditions simultaneously and will also have a large enough area to reduce the specific energy deposition to an acceptable level for certain beam intensities of interest. In this paper we present numerical simulations of thermodynamic and hydrodynamic behavior of a solid graphite target that is irradiated by 1 GeV/u uranium beam in the intensity range of 1010 –1011 ions per bunch with a bunch length = 50 ns. These simulations have been carried out using a three-dimensional computer code, PIC3D, that includes elastic-plastic effects. This theoretical work has shown that up to a beam intensity of 1011 ions/bunch, one can employ a solid target while for higher intensities the target will be destroyed due to thermal stresses induced by the beam. It has also been found that a circular focal spot leads to minimum thermal stresses as it generates minimum pressure gradients compared to an elliptic focal spot, for the same specific energy deposition. Moreover, the stress level increases with an increase in the ellipticity of the focal spot. It is therefore recommended that one should use a circular focal spot for lower intensities provided that the criteria for isotope resolution and transmission are fulfilled.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bushman, A.V., Kanel, G.I., Ni, A.L. & Fortov, V.E. (1993). Thermophysics and dynamics of intense pulsed loadings. Taylor and Francis: London.Google Scholar
Fortov, V.E., Kim, V., Lomonosov, I.V., Matveichev, A., & Ostrik, A. (2006). numerical modeling of hypervelocity impacts. Intl. J. Impact Engin. 33, 244.CrossRefGoogle Scholar
Geissel, H., Weick, H., Münzenberg, G., Chichkine, V., Yavor, M., Aumann, T., Behr, K.H., Böhmer, A., Brünle, A., Burkahrd, K., Benlliure, J., Cortina-Gil, D., Chulkov, L., Dael, A., Ducret, J.-E., Emling, H., Franczak, B., Friese, J., Gastineau, B., Gerl, J., Gernhäuser, R., Hellström, M., Johnson, B., Kojouharova, J., Kulessa, R., Kindler, B., Kurz, N., Lommel, B., Mittig, W., Moritz, G., Mühle, Nolen, J.A., Nyman, G., Rousell-Chomaz, P., Scheindenberger, C., Schmidt, K.-H., Schrieder, G., Sherrill, B.M., Simon, H., Sümmerer, K., Tahir, N.A., Vysotsky, V., Wollnik, H. & Zeller, A.F. (2003). The Super-FRS project at GSI. Nucl. Instrum. Meth. Phys. Res. B 204, 71.CrossRefGoogle Scholar
Heidenreich, G. (2002). Carbon and beryllium targets at PSI. AIP Conf. Proc. 642: High Intensity and High Brightness Hadron Beams 642, 124.Google Scholar
Henning, W.F. (2004). The future GSI facility. Nucl. Instrum. Meth. Phys. Res. B. 214, 155.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives of high energy density physics with intense ions and laser beams. Laser Part. Beams 23, 47.CrossRefGoogle Scholar
Kerley, G.I. (2001). Multi-component multiphase equation-of-state for carbon. Sandia Nat. Lab. Rep. SAND2001-2619.Google Scholar
Lomonosov, I.V. (2007). A multi-phase equation-of-state for aluminum. Laser Part. Beams 25, 567.CrossRefGoogle Scholar
Lopez Cela, J.J., Piriz, A.R., Serena Moreno, M. & Tahir, N.A. (2006). Numerical simulations of Rayleigh–Taylor instability in elastic solids. Laser Part. Beams 24, 427.CrossRefGoogle Scholar
Nolen, J.A., Reed, C.B., Hassanein, A., Novick, V.J., Plotkin, P., Specht, J.R., Morrissey, D.J., Ottarson, J.H. & Sherrill, B.M. (2003). An adjustable thickness Li/Be target for fragmentation of 4-kW heavy ion beams. Nucl. Instrum. Meth. Phys. Res. B. 204, 293.CrossRefGoogle Scholar
Piriz, A.R., Portugues, R.F., Tahir, N.A. & Hoffmann, D.H.H. (2002). Implosion of multilayered cylindrical targets driven by intense heavy ion beams. Phys. Rev. E. 66, 056403.CrossRefGoogle ScholarPubMed
Piriz, A.R., Tahir, N.A., Hoffmann, D.H.H. & Temporal, M. (2003). Generation of a hollow ion beam: calculation of the rotation frequency required to accomodate symmetry constraint. Phys. Rev. E. 67, 017501.CrossRefGoogle Scholar
Piriz, A.R., Temporal, M., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2005). Rayleigh-Taylor instability in elastic solids. Phys. Rev. E. 72, 056313.CrossRefGoogle ScholarPubMed
Piriz, A.R., Lopez Cela, J.J., Serena Moreno, M., Tahir, N.A. & Hoffmann, D.H.H. (2006). Thin plate effects in the Rayleigh-Taylor instability of elastic solids. Laser Part. Beams 24, 275.CrossRefGoogle Scholar
Piriz, A.R., Tahir, N.A., Lopez Cela, J.J., Cortazar, O.D., Serna Moreno, M.C., Temporal, M. & Hoffmann, D.H.H. (2007). Analytic models for the design of the LAPLAS target. Contrib. Plasma Phys. 47, 213.CrossRefGoogle Scholar
Piriz, A.R., Lopez Cela, J.J., Serna MOreno, M.C., Cortazar, O.D., Tahir, N.A., & Hoffmann, D.H.H. (2007). A new approach to Rayleigh–Taylor instability: Applications to accelerated elastic solids. Nucl. Instrum. Meth. Phys. Res. A. 577, 250.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Spiller, P. & Bock, R. (1999). Heavy-ion-induced hydrodynamic effects in solid targets. Phys. Rev. E. 60, 4715.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000 a). Shock compression of condensed matter using intense beams of energetic heavy ions. Phys. Rev. E. 61, 1975.CrossRefGoogle ScholarPubMed
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000 b). Equation-of-state properties of high-energy-density matter using intense heavy ion beams with an annular focal spot. Phys. Rev. E. 62, 1224.CrossRefGoogle ScholarPubMed
Tahir, N.A., Kozyreva, Spiller P., Hoffmann, D.H.H. & Shutov, A. (2001 a). Necessity of bunch compression for heavy-ion-induced hydrodynamics and studies of beam fragmentation in solid targets at a proposed synchrotron facility. Phys. Rev. E. 63, 036407.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Tauschwitz, A., Shutov, A., Maruhn, J.A., Spiller, P., Nuener, U., Jacoby, J., Roth, M., Bock, R., Juranek, H. & Redmer, R. (2001 b). Metallization of hydrogen using heavy-ion-beam implosion of multi-layered targets. Phys. Rev. E. 63, 016402.Google Scholar
Tahir, N.A., Juranek, H., Shutov, A., Redmer, R., Piriz, A.R., Temporal, M., Varentsov, D., Udrea, S., Hoffmann, D.H.H., Deutsch, C., Lomonosov, I. & Fortov, V.E. (2003 a). Influence of the equation of state on the compression and heating of hydrogen. Phys. Rev. B. 67, 184101.CrossRefGoogle Scholar
Tahir, N.A., Winkler, M., Kojouharova, J., Rousell-Chomaz, P., Chichkine, V., Geissel, H., Hoffmann, D.H.H., Kindler, B., Landre-Pellemoine, F., Lommel, B., Mittig, W., Münzenberg, G., Shutov, A., Weick, H. & Yavor, M. (2003 b). High-power production targets for the Super-FRS using a fast extraction scheme. Nucl. Instrum. Meth. Phys. Res. B. 204, 282.CrossRefGoogle Scholar
Tahir, N.A., Adonin, A., Deutsch, C., Fortov, V.E., Grandjouan, N., Geil, B., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 a). Studies of heavy ion-induced high-energy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility. Nucl. Instrum. Methods Phys. Res. A. 544, 16.CrossRefGoogle Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 b). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.CrossRefGoogle Scholar
Tahir, N.A., Weick, H., Iwase, H., Geissel, H., Hoffmann, D.H.H., Kindler, B., Lommel, B., Radon, T., Münzenberg, G. & Sümmerer, K. (2005 c). Calculations of high-power production target and beamdump for the GSI future Super-FRS for a fast extraction scheme at the FAIR facility J. Phys. D: Appl. Phys. 38, 1828.CrossRefGoogle Scholar
Tahir, N.A., Goddard, B., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 d). Impact of 7-Tev/c Large Hadron Collider proton beam on a copper target. J. Appl. Phys. 97, 083532.CrossRefGoogle Scholar
Tahir, N.A., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Temporal, M. & Hoffmann, D.H.H., Fortov, V.E. (2005 e). The CERN Large Hadron Collider as a tool to study high-energy-density physics. Phys. Rev. Lett. 94, 135004.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Udrea, S., Cortazar, O.D., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Lomonosov, I.V., Ni, P., Piriz, A.R., Shutov, A., Temporal, M. & Varentsov, D. (2006). Studies of equation-of-state properties of high-energy density matter using intense heavy ion beams at the future FAIR facility: The HEDgeHOB Collaboration. Nucl. Instrum. Meth. Phys. Res. B. 245, 85.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Wouchuk, G., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 a). HEDgeHOB: high-energy-density matter generated by heavy ion beams at the future facility for antiprotons and ion research. Nucl. Instrum. Meth. Phys. Res. A. 577, 238.CrossRefGoogle Scholar
Tahir, N.A., Piriz, A.R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Wouchuk, G., Deutsch, C., Spiller, P., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 b). Survey of theoretical work for the proposed HEDgeHOB collaboration: HIHEX and LAPLAS. Contribu. Plasma Phys. 47, 223.CrossRefGoogle Scholar
Tahir, N.A., Schmict, R, Brugger, M., Lomonosov, I.V., Shutov, A., Piriz, A.R., Udrea, S., Hoffmann, D.H.H. & Deutsch, C. (2007 c). Prospects of high energy density research using the CERN Super Proton Synchrotron. Laser Part. Beams. 25, 639.CrossRefGoogle Scholar
Tahir, N.A., Kim, V., Grigoriev, D.A., Piriz, A.R., Weick, H., Geissel, H. & Hoffmann, D.H.H. (2007 d). High energy density physics problems related to liquid jet lithium target for Super-FRS fast extraction scheme. Laser Part. Beams 25, 295.CrossRefGoogle Scholar
Tahir, N.A., Kim, V., Matveichev, A., Ostrik, A., Lomonosov, I.V., Piriz, A.R., Weick, , Lopez Cela, J.J. & Hoffmann, D.H.H. (2007 e). Numerical modeling of heavy ion induced thermal stress waves in solid targets. Laser Part. Beams 25, 523.CrossRefGoogle Scholar
Temporal, M., Piriz, A.R., Grandjouan, N., Tahir, N.A., Hoffmann, D.H.H. (2003). Numerical analysis of a multilayered cylindrical target compression driven by a rotating intense heavy ion beam. Laser Part. Beams. 21, 609.CrossRefGoogle Scholar
Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137.CrossRefGoogle Scholar