Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T15:10:48.702Z Has data issue: false hasContentIssue false

High efficient beam cleanup based on stimulated Brillouin scattering with a large core fiber

Published online by Cambridge University Press:  15 September 2014

Qilin Gao
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
Zhiwei Lu*
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
Chengyu Zhu
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
Jianhui Zhang
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
*
Address correspondence and reprint requests to: Z. W. Lu, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China. E-mail: [email protected]

Abstract

A novel approach of beam cleanup based on stimulated Brillouin scattering with a large core fiber is proposed to improve the laser beam quality. The fusion splice scheme from a single-mode fiber to a very large core fiber (105 µm) is first employed in stimulated Brillouin scattering to steadily excite the fundamental mode of the Stokes beam. As a result, the output beam achieves a measured M2 value of around 1.3 meanwhile the pump conversion efficiency is up to 90%, which is the best in the reports of stimulated Brillouin scattering cleanup to our knowledge.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bennaï, B., Lombard, L., Jolivet, V., Delezoide, C., Pourtal, E., Bourdon, P., Canat, G., Vasseur, O. & Jaouën, Y. (2008). Brightness scaling based on 1.55 µm fiber amplifiers coherent combining. Fiber Integrat. Opt. 27, 355369.Google Scholar
Brown, K.C., Russell, T.H., Alley, T.G. & Roh, W.B. (2007). Passive combination of multiple beams in an optical fiber via stimulated Brillouin scattering. Opt. Lett. 32, 10471049.CrossRefGoogle Scholar
Bruesselbach, H. (1993). Beam cleanup using stimulated Brillouin scattering in multimode fibers. Conference on Lasers and Electro-Optics Baltimore, Maryland, pp. 424.Google Scholar
Chiou, A.E. & Yeh, P. (1985). Beam cleanup using photorefractive two-wave mixing. Opt. lett. 10, 621623.Google Scholar
Dong, Y., Chen, L. & Bao, X. (2011). Time-division multiplexing-based BOTDA over 100 km sensing length. Opt. Lett. 36, 277279.Google Scholar
Flusche, B.M., Alley, T.G., Russell, T.H. & Roh, W.B. (2006). Multi-port beam combination and cleanup in large multimode fiber using stimulated Raman scattering. Opt. Exp. 14, 1174811755.Google Scholar
Hao, L., Liu, Z., Hu, X. & Zheng, C. (2013). Competition between the stimulated Raman and Brillouin scattering under the strong damping condition. Laser Part. Beams 31, 203209.Google Scholar
Jang, J. & Murdoch, S. (2012). Strong Brillouin suppression in a passive fiber ring resonator. Opt. Lett. 37, 12561258.Google Scholar
Jeunhomme, L. & Pocholle, J. (1978). Selective mode excitation of graded index optical fibers. Appl. Opt. 17, 463468.Google Scholar
Jung, Y., Jeong, Y., Brambilla, G. & Richardson, D.J. (2009). Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber. Opt. Lett. 34, 23692371.Google Scholar
Kong, H., Shin, J., Yoon, J. & Beak, D. (2009). Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors. Laser Part. Beams 27, 179184.Google Scholar
Kong, H., Yoon, J., Beak, D., Shin, J., Lee, S. & Lee, D. (2007). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25, 225238.Google Scholar
Lei, X., Wang, S., Yan, H., Liu, W., Dong, L., Yang, P. & Xu, B. (2012 a). Double-deformable-mirror adaptive optics system for laser beam cleanup using blind optimization. Opt. Exp. 20, 2214322157.CrossRefGoogle ScholarPubMed
Lei, X., Xu, B., Yang, P., Dong, L., Liu, W. & Yan, H. (2012b). Beam cleanup of a 532-nm pulsed solid-state laser using a bimorph mirror. Chinese Opt. Lett. 10, 021401.Google Scholar
Lombard, L., Brignon, A., Huignard, J.-P., Lallier, E. & Georges, P. (2006). Beam cleanup in a self-aligned gradient-index Brillouin cavity for high-power multimode fiber amplifiers. Opt. Lett. 31, 158160.Google Scholar
Massey, S.M. & Russell, T.H. (2008). Phase analysis of stimulated Brillouin scattering in long, graded-index optical fiber. Opt. Exp. 16, 1149611505.Google Scholar
Massey, S.M., Spring, J.B. & Russell, T.H. (2009). Continuous wave stimulated Brillouin scattering phase conjugation and beam cleanup in optical fiber. doi:10.1117/12.812325Google Scholar
Okawachi, Y., Bigelow, M.S., Sharping, J.E., Zhu, Z., Schweinsberg, A., Gauthier, D.J., Boyd, R.W. & Gaeta, A.L. (2005). Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902.Google Scholar
Omatsu, T., Kong, H., Park, S., Cha, S., Yoshida, H., Tsubakimoto, K., Fujita, H., Miyanaga, N., Nakatsuka, M. & Wang, Y. (2012). The Current trends in SBS and phase conjugation. Laser Part. Beams 30, 117174.CrossRefGoogle Scholar
Rodgers, B.C., Russell, T.H. & Roh, W.B. (1999). Laser beam combining and cleanup by stimulated Brillouin scattering in a multimode optical fiber. Opt. Lett. 24, 11241126.Google Scholar
Roh, W.B. (2004). Single-mode Raman fiber laser based on a multimode fiber. Opt. Lett. 29, 153155.Google Scholar
Sarkissian, H., Tsai, C.C., Zeldovich, B. & Tabirian, N. (2005). Beam combining using orientational stimulated scattering in liquid crystals. JOSA B 22, 26282634.Google Scholar
Sharma, R., Sharma, P., Rajput, S. & Bhardwaj, A. (2009). Suppression of stimulated Brillouin scattering in laser beam hot spots. Laser Part. Beams 27, 619627.Google Scholar
Sheldakova, J., Kudryashov, A., Samarkin, V. & Zavalova, V. (2008). Problem of Shack-Hartmann wavefront sensor and Interferometer use while testing strongly distorted laser wavefront. Conference Problem of Shack-Hartmann wavefront sensor and Interferometer use while testing strongly distorted laser wavefront, pp. 68720B-68720B-6.CrossRefGoogle Scholar
Smith, A.V., Do, B.T., Hadley, G.R. & Farrow, R.L. (2009). Optical damage limits to pulse energy from fibers. IEEE J. 15, 153158.Google Scholar
Song, K.Y., Kim, Y.H. & Kim, B.Y. (2013). Intermodal stimulated Brillouin scattering in two-mode fibers. Opt. Lett. 38, 18051807.Google Scholar
Steinhausser, B., Brignon, A., Lallier, E., Huignard, J.-P. & Georges, P. (2007). High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup. Opt. Exp. 15, 64646469.Google Scholar
Tabiryan, N., Sukhov, A. & Zel'Dovich, B.Y. (2001). High-efficiency energy transfer due to stimulated orientational scattering of light in nematic liquid crystals. JOSA B 18, 12031205.Google Scholar
Ward, B. & Mermelstein, M. (2010). Modeling of inter-modal Brillouin gain in higher-order-mode fibers. Opt. Exp. 18, 19521958.Google Scholar
Winiarz, J.G. & Ghebremichael, F. (2004). Beam cleanup and image restoration with a photorefractive polymeric composite. Appl. Opt. 43, 31663170.Google Scholar
Yang, P., Liu, Y., Yang, W., Ao, M.-W., Hu, S.-J., Xu, B. & Jiang, W.-H. (2007). Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror. Opt. Commun. 278, 377381.Google Scholar
Yoshida, H., Fujita, H., Nakatsuka, M., Ueda, T. & Fujinoki, A. (2007). Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength. Laser Part. Beams 25, 481488.CrossRefGoogle Scholar