Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T17:06:50.415Z Has data issue: false hasContentIssue false

Growth of amorphous carbon and graphene on pulse laser deposited SiC films and their characterization studies

Published online by Cambridge University Press:  12 December 2012

Pratima K. Mishra*
Affiliation:
Institute of Minerals and Materials Technology (CSIR-IMMT), Bhubaneswar, Orissa, India
Bijayalaxmi Sahoo
Affiliation:
Institute of Minerals and Materials Technology (CSIR-IMMT), Bhubaneswar, Orissa, India
*
Address correspondence and reprint requests to: Pratima K. Mishra, Advance Materials Technology Department, Institute of Minerals and Materials Technology (CSIR-IMMT), Bhubaneswar-751013, Orissa, India. E-mail: [email protected]

Abstract

Laser induced ablation studies have been carried out on formation of amorphous carbon and graphene on SiC thin films with their detailed characterization studies. Pulse laser ablation technique with process parameters such as 248 nm KrF excimer laser, frequency 10 Hz, 200 mJ of laser energy, and chamber pressure of 7 × 10−6 mbar has been used. Films were characterized in detail by grazing incidence X-ray diffraction, Fourier transform infrared, micro-Raman, X-ray reflectivity, Field emission scanning electron microscopic, transmission electron microscope, and Nano-indentation techniques and the results are reported. As deposited SiC film surface is rich in amorphous carbon and the same has been used as the nucleation site for further growth of graphene on SiC films. Film hardness increased from 29 GPa to 37 GPa for SiC film and graphene on SiC film (C-SiC), respectively. These films show bands due to surface phonon polariton mode in the range of 810–840 cm−1 that is a research concern today in nano-photonics area. Further these materials find applications in understanding the laser irradiation effects on SiC based nuclear fusion wall material.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdelsayed, V., Glaspell, G., Nguyen, M., Howe, J.M. & El-Shall, M.S. (2008). Laser synthesis of bimetallic nanoalloys in the vapor and liquid phases and the magnetic properties of PdM and PtM nanoparticles (M = Fe, Co and Ni). Faraday Discuss 138, 163180.CrossRefGoogle ScholarPubMed
Avila, A., Montero, I., Galan, L., Ripalda, J.M. & Levy, R. (2001). Behaviour of oxygen doped SiC thin films: An X-ray photoelectron spectroscopy study. J. Appl. Phys. 89, 212216.CrossRefGoogle Scholar
Banaerjee, S., Ferrari, S., Chateigner, D. & Gibaud,. (2004). Recent advances in characterization of ultra-thin films using specular X-ray reflectivity technique. Thin Solid Films 450, 2328.CrossRefGoogle Scholar
Behera, S.N. & Roul, B.K. (2008). Carbon: The materials and its characterisation by Raman spectroscopy. Proceedings of the International Workshop on Mesoscopic, Nanoscopic, and Macroscopic Materials. Buhbaneswar, India.CrossRefGoogle Scholar
Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N. & de Heer, W.A. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Sci. 312, 11911196.CrossRefGoogle ScholarPubMed
Capano, M.A., Walck, S.D., Murray, P.T., Dempsey, D. & Grant, J.T. (1994). Pulsed laser deposition of silicon carbide at room temperature. Appl. Phys. Lett. 64, 34133415.CrossRefGoogle Scholar
Casady, J.B. & Johnson, R.W. (1996). Status of Silicon carbide (SiC) as a wide-band gap semiconductor for high-temperature applications: A review. Solid State Electron. 39, 14091422.CrossRefGoogle Scholar
Costa, A.K., Camargo, S.S., Achete, C.A. & Carius, R. (2000). Characterization of ultra-hard silicon carbide coatings deposited by RF magnetron sputtering. Thin Solid Films 377–378, 243248.CrossRefGoogle Scholar
Dawlaty, J.M., Shivaraman, S., Strait, J., George, P., Chandrashekhar, Mvs., Rana, F., Spencer, M.G., Veksler, D. & Chen, Y. (2008). Measurement of the optical absorption spectra of epitaxial graphene from tetrahertz to visible. Appl. Phys. Lett. 93, 131905/3.CrossRefGoogle Scholar
Ekimov, E.A., Gavriliuk, A.G., Palosz, B., Gierlotka, S., Dluzewski, P., Tatianin, E., Kluev, Y., Naletov, A.M. & Presz, A. (2000). High-pressure, high-temperature synthesis of SiC-diamond nanocrystalline ceramics. Appl. Phys. Lett. 77, 954956.CrossRefGoogle Scholar
Fawcett, T.J., Wolen, J.T., Myers, R.L., Walker, J. & Saddow, S.E. (2004) Wide-range (0.33%–100%) 3C-SiC resistive hydrogen gas sensor. Appl. Phys. Lett. 85, 416418.CrossRefGoogle Scholar
Fazio, E., Neri, F., Ossi, P.M., Santo, N., Trusso, S. (2009). Ag nanocluster synthesis by laser ablation in Ar atmosphere: A plume dynamics analysis. Laser Part. Beams 27, 281290.CrossRefGoogle Scholar
Ferrari, A.C., Meyer, J.C., Scardaci, C., Cassiraghi, C., Lazzeri, M., Piscanec, S., Jhiang, D., Novoselov, K.S., Roth, S. & Gelm, A.K. (2006). Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401187404.CrossRefGoogle ScholarPubMed
Gusev, A.S., Ryndya, S.M., Kargin, N.I. & Bondarenko, E.A. (2010). Low temperature synthesis of SiC films by vacuum laser ablation and their characterisation. J. Surf. Invest. 4, 374378.CrossRefGoogle Scholar
Hahn, A. & Barcikowski, S. (2009). Production of bioactive nanomaterial using laser generated nanoparticles. J. Laser Micro/Nanoeng 4, 5154.CrossRefGoogle Scholar
Hahn, A., Barcikowski, S. & Chichkov, B. (2008). Influences on nanoparticle production during pulsed laser ablation. J Laser Micro/Nanoeng. 3, 7377.CrossRefGoogle Scholar
Hirohata, Y., Koboyashi, M., Maeda, S., Nakamaru, K., Mohri, M., Watanabe, K. & Yamashina, T. (1979). SiC coatings for first-wall candidate materials by R.F. sputtering. Thin Solid Films 63, 234272.CrossRefGoogle Scholar
Hodak, J.H., Henglein, A. & Giersig, M. (2000). Laser-induced interdiffusion in AuAg core–shell nanoparticles. J. Phys. Chem. B 104, 1170811718.CrossRefGoogle Scholar
Horlein, R., Steinke, S., Henig, A., Rykovanov, S.G., Schnurer, M., Sokollik, L., Kiefer, D., Jung, D., Yan, X.Q., Tajima, T., Hegelich, M., Nickles, P.V., Zept, M., Tsakiris, G.D., Sandner, W. & Habs, D. (2011). Dynamics of nanometer-scale foil targets irradiated with relativistically intense laser pulses. Laser Part. Beams 29, 383388.CrossRefGoogle Scholar
Jung, H.-S., Park, H.-H., Mendieta, I.R. & Smith, D.A. (2003). Enhancement of sp3 hybridized C in amorphous carbon films by Ar ion bombardment and Si incorporation. J. Appl. Phys. 94, 48284834.CrossRefGoogle Scholar
Katharria, Y.S., Kumar, S., Prakash, R., Choudhary, R.J., Singh, F., Phase, D.M. & Kanjilal, D. (2007). Characterizations of pulsed laser deposited SiC thin films. J. Non-Cryst. Sol. 353, 46604665.CrossRefGoogle Scholar
Keffous, A., Bourenane, K., Kechouane, M., Gabouze, N. & Kerdja, T. (2007). Morphological, structural and optical properties of thin SiC layer growth onto silicon by pulsed laser deposition. Vacuum 81, 632635.CrossRefGoogle Scholar
Kerdiles, S., Berthelot, F. & Gourbilleau, R. (2000). Low temperature deposition of nanocrystalline silicon carbide thin films. Appl. Phys. Lett. 76, 23732375.CrossRefGoogle Scholar
Kusumori, T., Muto, H. & Brito, M.E. (2004). Control of polytype formation in Silicon carbide heteroepitaxial films by pulsed-laser deposition. Appl. phys. Lett. 84, 12721274.CrossRefGoogle Scholar
Lim, D.-C., Jee, H.-G., Kim, J.W., Moon, J.-S., Lee, S.-B., Choi, S.S. & Boo., J.H. (2004). Deposition of epitaxial silicon carbide films using high vacuum MOCVD method for MEMS applications. Thin Solid Films 459, 712.CrossRefGoogle Scholar
Mattausch, A. & Pankratov, O. (2007). Ab Intio Study of graphene on SiC. Phys. Rev. Lett. 99, 076802.CrossRefGoogle Scholar
Nayak, B.B., Behera, D.D. & Mishra, B.K. (2010). Nanorods of silicon carbide from silicon carbide powder by high temperature heat treatment. J. Mater. Sci. 46, 30523059.CrossRefGoogle Scholar
Pavesi, L., Dal Negro, L. & Mazzoleni, C. (2000). Optical gain in silicon nanocrystals. Nat. 408, 440444.CrossRefGoogle ScholarPubMed
Perron, D., Maccioni, G., Chiolerio, A., Martinez De Marigorta, C., Naretto, M., Pandolfi, P., Martino, P., Ricciardi, C., Chiodoni, A., Celasco, E., Scaltrito, L. & Ferrero, S. (2009). Study on the possibility of graphene growth on 4H-silicon carbide surfaces via laser processing. http://www.micro-la.com/public%5CStudy%20on%20the%20possibility%20of%20graphene%20growth%20on%204H-silicon%20carbide%20surfaces%20via%20laser%20processing%20.pdf.Google Scholar
Pharr, G.M. (1998). Measurement of mechanical properties by ultra-low load indention. Mater. Sci. Engin. A 253, 151159.CrossRefGoogle Scholar
Presser, V., Heon, M. & Gogotsi, Y. (2011). Carbide-derived carbons – from porous networks to nanotubes and graphene. Adv. Funct. Mater. 21, 810833.CrossRefGoogle Scholar
Qazi, M., Nomani, M.W.K., Chandrashekhar, M.V.S., Shields, V.B., Spencer, M.G. & Koley, G. (2010). Molecular Adsorption Behaviour of Epitaxial graphene growth on 6H-SiC Faces. Appl. Phys. Express 3, 07510/13.CrossRefGoogle Scholar
Rajan, N., Zorman, C.A., Mehregany, M., Deanna, R. & Harvey, K. (1998). Performance of 3C-SiC thin films as protective coatings for silicon micromachined atomizers. Thin solid film 315, 170178.CrossRefGoogle Scholar
Rimal, L., Ager, R., Logothetis, E.M., Weber, W.H. & Hangas, J. (1991). Preparation of oriented silicon carbide films by laser ablation of ceramic silicon carbide targets. Appl. Phys. Lett. 59, 22662268.Google Scholar
Shukla, G. & Khare, A. (2010). Spectroscopic studies of laser ablated ZnO plasma and correlation with pulsed laser deposited ZnO thin film properties. Laser Part. Beams 28, 149155.CrossRefGoogle Scholar
Siegal, D.A., Hwang, C.G., Fedorov, A.V. & Lanzara, A. (2010). Quasifreestanding multilayer graphene films on the carbon face of SiC. Phys. Rev. B 81, 241417 (R).Google Scholar
Siegel, D.A., Zhou, S.Y., Gabaly, F.Ei., Schmid, A.K., Mccarty, K.K.F. & Lanzara, A. (2009). Three-fold diffraction symmetry in epitaxial graphene on the SiC substrate. Phys. Rev. B 80, 241407 (R).CrossRefGoogle Scholar
Stiver, J. (2009). Growth and characterization of graphene on Silicon Carbide. http://www.nnin.org/doc/2009reura/2009NNINireuStiver.pdf .Google Scholar
Tabbal, M., Said, A., Hannoun, E. & Christidis, T. (2007). Amorphous to crystalline phase transition in pulsed laser deposited silicon carbide. Appl. Surf. Sci. 253, 70507059.CrossRefGoogle Scholar
Takao, S., Kohno, H., Ichikawa, S. & Takeda, S. (2008). MOCVD growth of spherical aggregates of SiC nanocrystallites. Appl. Surf. Sci. 254, 76307632.CrossRefGoogle Scholar
Taylor, M.E. & Atwater, H.A. (1998). Monte Carlo simulations of epitaxial growth: comparison of pulsed laser deposition and molecular beam epitaxy. Appl. Surf. Sci. 1279–12, 159163.CrossRefGoogle Scholar
Trusso, S., Barletta, E., Barreca, F., Fazio, E. & Neri, F. (2005). Time resolved imaging studies of the plasma produced by laser ablation of silicon in O2/Ar atmosphere. Laser Part. Beams 23, 149153.CrossRefGoogle Scholar
Tuinstra, F. & Koenig, J. (1970). Raman spectrum of graphite. J. Chem. Phys. 53, 11261131.CrossRefGoogle Scholar
Veiko, V.P., Shakhno, E.A., Smirnov, V.N., Miaskovski, A.M. & Nikishin, G.D. (2006). Laser-induced film deposition by LIFT: Physical mechanisms and applications. Laser Part. Beams 24, 203209.CrossRefGoogle Scholar
Veres, M., Toth, S. & Koos, M. (2008). New aspects of Raman scattering in carbon-based amorphous materials. Diam. Relat. Mater. 17, 16921696.CrossRefGoogle Scholar
Vizzini, S., Enriquez, H., Chiang, S., Oughaddou, H. & Soukiassian, P. (2011). Nanostructure developing at the graphene/silicon carbide interface. Surf. Sci. Lett. 605, L6L11.CrossRefGoogle Scholar
Wang, Y.L., Xu, W., Zhou, Y., Chu, L.Z. & Fu, G.S. (2007). Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablation. Laser Part. Beams 25, 913.CrossRefGoogle Scholar
Welz, S., Gogotsi, Y. & Mc Nallan, M. (2003). Nuceation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. J. Appl. Phys. 93, 42074214.CrossRefGoogle Scholar
Wu, C.-H., Zorman, C.A. & Mehregany, M. (2006). Fabrication and testing of bulk micromachined Silicon Carbide pizeoresistivity pressure sensors for high temperature applications. IEEE Sensors J. 6, 316324.Google Scholar
Zhao, X., He, X., Sun, Y., Yi, J. & Xiao, P. (2009). Superhard and tougher SiC/diamond-like-carbon composite films produced by electron beam physical vapour deposition. Acta Mater. 57, 893902.CrossRefGoogle Scholar
Zhao, Y., Qian, J., Daeman, L.L., Pantea, C., Zhang, J., Voronin, G.A. & Zerda, T.W. (2004). Enhancements of fracture toughness of diamond-SiC composites. Appl. Phys. Lett. 84, 13561358.CrossRefGoogle Scholar
Ziegler, G., Lanig, P., Theis, D. & Weyrich, C. (1983). Single crystal growth of SiC substrate material for blue light emitting diodes. IEEE Trans. Electron Devices 30, 277281.CrossRefGoogle Scholar