Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T04:25:39.409Z Has data issue: false hasContentIssue false

Genetic algorithms in spectroscopic diagnostics of hot dense plasmas

Published online by Cambridge University Press:  28 November 2006

PETR ADÁMEK
Affiliation:
Czech Technical University, FNSPE, Prague, Czech Republic
OLDRICH RENNER
Affiliation:
Institute of Physics, Prague, Czech Republic
LADISLAV DRSKA
Affiliation:
Czech Technical University, FNSPE, Prague, Czech Republic
FRANK B. ROSMEJ
Affiliation:
Université de Provence et CNRS, Marseille, France
JEAN-FRANÇOIS WYART
Affiliation:
Laboratoire Aimé Cotton, CNRS UPR3321, Orsay, France

Abstract

This paper will present a novel genetic-algorithm-based code (GASPED), developed for the analysis of fine features (e.g., satellite structure and line shifts) in X-ray spectra emitted by hot dense plasmas. The problem dependent modification of standard genetic-algorithm concepts allows efficient decomposition of spectra in concrete physical terms, such as resonance and intercombination lines, dielectronic satellites, or prospective nuclear transitions. Two examples of the code application demonstrate the proposed approach. High resolution K-shell spectra emitted from He- and Li-like Al ions immersed in dense, constrained-flow plasma are decomposed into individual pseudo-Voigt components, by using anticipatory theoretical knowledge of the satellite structure simulated by the multilevel collisional-radiative code (MARIA). Line shifts of the He-like resonance and intercombination line are deduced assuming the aggregate plasma-induced shifts of the parent lines and their satellites. The trend in the frequency shifts observed as a function of the variable plasma parameters qualitatively follows the theoretical predictions. The found variations of the exchange energy between the singlet and triplet levels provide a new impact for the line shift theories. The second example concerns the search for low-lying nuclear transitions in hot dense laser-produced plasmas. The spectra of highly ionized Ta are decomposed by combining the GASPED code with results of ab initio atomic data calculations performed by the RELAC code. Upper limits for observation of the controversial radiative decay of Ta nuclei at 6.238 eV are estimated.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A.V., Volkov, R.V., Gordienko, V.M., Mikheev, P.M., Savel'ev, A.B., Tkalya, E.V., Chalykh, R.A., Chutko, O.V, Dykhne, A.M., Kalashnikov, M.P. & Nikles, P.V. (2000). Excitation and decay of low-lying nuclear states in a dense plasma produced by a subpicosecond laser pulse. J. Exp. Theor. Phys. 118, 13431175.Google Scholar
Andreev, A.V., Chutko, O.V., Dykhne, O.M., Gordienko, V.M., Joukov, M.A., Mikheev, P.M., Petrova, E.V., Rusanov, A.A., Savel'ev, A.B. & Tkalya, E.V. (2002). Non-linear excitation and decay of low-energy nuclear isomers produced under femtosecond laser-plasma interactions. Hyperfine Interactions 143, 2336.CrossRefGoogle Scholar
Bar-Shalom, A., Klapisch, M. & Oreg, J. (2001). Hullac, an integrated computer package for atomic processes in plasmas. J. Quant. Spectr. Rad. Transfer 71, 169188.CrossRefGoogle Scholar
Boiko, V.A., Skobelev, I.Y., Plachnigov V.G., &Faenov, A.Y (1988). Spectroscopic constants of atoms and ions. Moscow: Izdatelstvo Standartov.
Boiko, V.A., Vinogradov, A.V., Pikuz, S.A., Skobelev, I.Yu. & Faenov, A.Ya. (1985). X-ray spectroscopy of laser produced plasma. J. Sov. Laser Res. 6, 82.Google Scholar
Chung, H.K., Chen, M.H., Morgan, W.L., Ralchenko, Y. & Lee, R.W. (2005). FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis of all elements. High Ener. Dens. Phys. 1, 312.CrossRefGoogle Scholar
Fedosejevs, R., Gobet, F., Dorchies, F., Fourment, C., Hannachi, F., Aléonard, M.M., Claverie, G., Gerbaux, M., Malka, G., Scheurer, J.N., Tarisien, M., Meot, V., Morel, P., Liesfeld, B., Robson, L., Blasco, F., Descamps, D., Schurtz, G., Nicolai, Ph. & Tikhonchuk, V. (2005). Heating of tantalum plasma for studies on the activation of 6.238 keV nuclear level of Ta. Proc. 32nd Conf. Plasma Phys. Tarragona, ECA Vol. 29C, P1-152.
Garcia-Talavera, M. & Ulicny, B. (2003). A genetic algorithm approach for multiplet deconvolution in gamma-ray spectra. Nucl. Intrum. Meth. Phys. Res. A 512, 585594.CrossRefGoogle Scholar
Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley.
Golovkin, I.E., Mancini, R.C. & Louis, S.J. (1999). Plasma X-ray spectra analysis using genetic algorithms. Proc. GECCO 1999, 15291534.Google Scholar
Golovkin, I.E., Mancini, R.C., Louis, S.J., Lee, R.W. & Klein, R. (2002). Analysis of X-ray spectral data with genetic algorithms. J. Quant. Spectr. Rad. Transfer 75, 625636.CrossRefGoogle Scholar
Griem, H.R. (1997). Principles of Plasma Spectroscopy. New York: Cambridge University Press.CrossRef
Hannachi, F., Aléonard, M.M., Claverie, G., Gerbaux, M., Gobet, F., Malka, G., Scheurer, J.N. & Tarisien, M. (2006). Nuclear physics with high intensity lasers. In Lasers and Nuclei: Applications of Ultrahigh Intensity Lasers in Nuclear Science (Schwoerer, H., Magill, J. and Beleites, B., Eds.), pp. 207216. Heidelberg: Springer.CrossRef
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.Google Scholar
Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P. & Ullschmied, J. (2001). The Prague Asterix Laser System (PALS). Phys. Plamas 8, 24952501.CrossRefGoogle Scholar
Junkel, G.C., Gunderson, M.A., Hooper, C.F., Jr. & Haynes, D.A., Jr. (2000). Full Coulomb calculation of Stark broadened spectra from multielectron ions: A focus on the dense plasma line shift. Phys. Rev. E 62, 55845593.Google Scholar
Kelly. (2006). Atomic line database. http://cfa-www.harvard.edu/amdata/ampdata/kelly/kelly.html. Cambridge, MA: Harvard-Smithsonian Center for Astrophysics.
Koenig, M., Malnoult, P. & Nguyen, H. (1988). Atomic structure and line broadening of He-like ions in hot dense plasmas. Phys. Rev. 38, 20892098.CrossRefGoogle Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.Google Scholar
Ledingham, K.W.D., Mckenna, P. & Singhal, R.P. (2003). Applications for nuclear phenomena generated by ultra-intense lasers. Science 300, 11071111.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.Google Scholar
Marquardt, D.V. (1963). An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Industr. Appl. Math. 11, 431441.CrossRefGoogle Scholar
McIntosh, S.W., Diver, D.A., Judge, P.G., Charbonneau, P., Ireland, J. & Brown, J.C. (1998). Spectral decomposition by genetic forward modelling. Astron. Astrophy. 132, 145153.CrossRefGoogle Scholar
Ralchenko, Yu., Jou, F.-C., Kelleher, D.E., Kramida, A.E., Musgrove, A., Reader, J., Wiese, W.L. & Olsen, K. (2006). NIST Atomic Spectra Database (version 3.1.0). Gaithersburg, MD: National Institute of Standards and Technology.
Ramìrez, F. & Fuentes, O. (2002). Spectral Analysis Using Evolution Strategies. Proc. Int. Conf. on Artif. Intellig. & Soft Comput., 208213.
Renner, O., Missalla, T., Sondhauss, P., Krousky, E., Förster, E., Chenais-Popovics, C. & Rancu, O. (1997). High luminosity, high resolution x-ray plasma spectroscopy by vertical geometry Johann spectrometer. Rev. Sci. Instr. 68, 23932403.CrossRefGoogle Scholar
Renner, O., Uschmann, I. & Förster, E. (2004). Diagnostic potential of advanced X-ray spectroscopy for investigation of hot dense plasmas. Laser Part. Beams 22, 2528.Google Scholar
Renner, O., Adámek, P., Angelo, P., Dalimier, E., Förster, E., Krousky, E., Rosmej, F.B. & Schott, R. (2006). Spectral line decomposition and frequency shifts in Al Heα group emission from laser produced plasmas. J. Quant. Spectr. Rad. Transfer 99, 523536.CrossRefGoogle Scholar
Rosmej, F.B. (1997). Hot electron X-ray diagnostics. J. Phys. B: Mol. Opt. Phys. 30, L819L828.Google Scholar
Rosmej, F.B., Hoffmann, D.H.H., Geissel, M., Roth, M., Pirzadeh, P., Faenov, A.Ya., Pikuz, T.A, Skobelev, I.Yu. & Magunov, A.I. (2001). Advanced x-ray diagnostics based on an observation of high-energy Rydberg transitions from autoionizing levels in dense laser-produced plasmas. Phys. Rev. A 63, 063409.Google Scholar
Rosmej, F.B., Griem, H.R., Elton, R.C., Jacobs, V.L., Cobble, J.A., Faenov, A.Ya., Pikuz, T.A., Geissel, M., Hoffmann, D.H.H., Süss, W., Uskov, D.B., Shevelko, V.P. & Mancini, R.C. (2002). Charge-exchange-induced two-electron satellite transitions from autoionizing levels in dense plasmas. Phys. Rev. E 66, 056402.Google Scholar
Rosmej, O.N., Pikuz, S.A., Korostiy, S., Blazevic, A., Brambrink, E., Fertman, A., Mutin, T., Efremov, V.P., Pikuz, T.A., Faenov, A.Y., Loboda, P., Golubev, A.A. & Hoffmann, D.H.H. (2005). Radiation dynamics of fast heavy ions interacting with matter. Laser Part. Beams 23, 7985.Google Scholar
Tragin, N., Geindre, J.-P., Monier, P., Gauthier, J.-C., Chenais-Popovics, C., Wyart, J.-F. & Bauche-Arnoult, C. (1988). Extended analysis of the x-ray spectra of laser-irradiated elements in the sequence from tantalum to lead. Physica Scripta 37, 7282.CrossRefGoogle Scholar
Welser, L.A., Mancini, R.C., Koch, J.A., Izumi, N., Louis, S.J., Golovkin, I.E., Barbee, T.W., Haan, S.W., Delettrez, J.A., Marshall, F.J., Regan, R.P., Smalyuk, V.A., Haynes, D.A. & Lee, R.W. (2006). Multi-objective spectroscopic analysis of core gradients: Extension from two to three objectives. J. Quant. Spectr. Rad. Transfer 99, 649657.CrossRefGoogle Scholar