Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:43:34.176Z Has data issue: false hasContentIssue false

Generation of terahertz radiation by beating of two laser beams in collisional magnetized plasma

Published online by Cambridge University Press:  30 August 2016

A. Hematizadeh*
Affiliation:
Department of Physics, Iran University of Science & Technology, Narmak, Tehran, Iran
S.M. Jazayeri
Affiliation:
Department of Physics, Iran University of Science & Technology, Narmak, Tehran, Iran
B. Ghafary
Affiliation:
Department of Physics, Iran University of Science & Technology, Narmak, Tehran, Iran
*
Address correspondence and reprint requests to: A. Hematizadeh, Department of Physics, Iran University of Science & Technology, Narmak, Tehran, Iran. E-mail: [email protected]

Abstract

This paper presents analytical calculations for terahertz (THz) radiation by beating of two cosh-Gaussian laser beams in a density rippled collisional magnetized plasma. Lasers beams exert a ponderomotive force on the electrons of plasma in beating frequency which generates THz waves. The magnetic field was considered parallel to the direction of lasers which leads to propagate right-hand circularly polarized or left-hand circularly polarized waves in the plasma depending on the phase matching conditions. Effects of collision frequency, decentered parameter of lasers and the magnetic field strength are analyzed for THz radiation generation. By the optimization of laser and plasma parameters, the efficiency of order 27% can be achieved.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akyildiz, I.F., Jornet, J.M. & Han, CH. (2014). Terahertz band: Next frontier for wireless communications. Phys. Commun. (Elsevier) 12, 16.CrossRefGoogle Scholar
Bartman, V.L., Litvak, A.G. & Suvorov, E.V. (2011). Mastering the terahertz domain: Sources and applications. Phys. – Usp. 54, 837.CrossRefGoogle Scholar
Bhasin, L. & Tripathi, V.K. (2011). Terahertz generation from laser filaments in the presence of a static electric field in a plasma. Phys. Plasmas 18, 123106.Google Scholar
Bittencourt, J.A. (2004). Fundamentals of Plasma Physics. 3rd edn. New York: Springer-Ver1ag.CrossRefGoogle Scholar
Chauhan, S. & Parashar, J. (2014). Laser beat wave excitation of terahertz radiation in a plasma slab. Phys. Plasmas 21, 103113.CrossRefGoogle Scholar
Chen, Y., Yamaguchi, M., Wang, M. & Zhang, X.C. (2007). Terahertz pulse generation from noble gases. Appl. Phys. Lett. 91, 251116.CrossRefGoogle Scholar
Chen, Z., Zhou, X., Werley, C.A. & Nelson, K.A. (2011). Generation of high power tunable multicycle teraherz pulses. Appl. Phys. Lett. 99, 071102.Google Scholar
Faure, J., Tilborg, J.V., Kanidal, R.A. & Leemans, W.P. (2004). Modelling laser-based table-top THz sources: Optical rectification, propagation and electro-optic sampling. Opt. Quantum Electron. 36, 681.Google Scholar
Glyavin, M.Y., Luchinin, A.G. & Golubiatnikov, G.Y. (2008). Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field. Phys. Rev. Lett. 100, 015101.CrossRefGoogle ScholarPubMed
Hashimshony, D., Zigler, A. & Papadopoulos, K. (1999). Generation of tunable far-infrared radiation by the interaction of a superluminous ionizing front with an electrically biased photoconductor. Appl. Phys. Lett. 74, 1669.CrossRefGoogle Scholar
Houard, A., Liu, Y., Prade, B., Tikhonchuk, V.T. & Mysyrowicz, A. (2008). Strong enhancement of Terahertz radiation from laser filaments in air by a static electric field. Phys. Rev. Lett. 100, 255006.CrossRefGoogle ScholarPubMed
Jepsen, P.U., Jacobsen, R.H. & Keiding, S.R. (1996). Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc. Amer. B. 13, 2424.Google Scholar
Kim, K.W., Kim, H., Park, J., Han, J.K. & Son, J.H. (2012). Terahertz tomographic imaging of transdermal drug delivery. IEEE Trans. Terahz. Sci. Technol. 2, 99.Google Scholar
Kleine-Ostmann, T. & Nagatsuma, T. (2010). A review on terahertz communications research. J. Infrared Millim. Terahz. Waves 32, 143.CrossRefGoogle Scholar
Lee, Y.S., Meade, T., Perlin, V., Winful, H., Norris, T.B. & Galvanauskas, A. (2000). Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate. Appl. Phys. Lett. 76, 2505.Google Scholar
Li, Yu.-T., Wang, W.-M., Li, C. & Sheng, Z.-M. (2012). High power terahertz pulses generated in intense laser-plasma interactions. Chin. Phys. B 21, 095203.CrossRefGoogle Scholar
Liu, Y., Houard, A., Prade, B., Akturk, S., Mysyrowicz, A. & Tikhonchuk, V.T. (2007). Terahertz radiation source in air based on bifilamentation of femtosecond laser pulses. Phys. Rev. Lett. 99, 135002.CrossRefGoogle ScholarPubMed
Malik, A.K. & Malik, H.K. (2013). Tuning and focusing of terahertz radiation by DC magnetic field in a laser beating process. IEEE J. Quantum Electron. 49, 2.Google Scholar
Malik, A.K., Malik, H.K. & Nishia, Y. (2011 a). Terahertz radiation generation by beating of two spatial-Gaussian lasers. Phys. Lett. A 375, 1191.Google Scholar
Malik, A.K., Malik, H.K. & Stroth, U. (2011 b). Strong terahertz radiation by beating of spatial-triangular lasers in a plasma. Appl. Phys. Lett. 99, 071107.CrossRefGoogle Scholar
Malik, A.K., Malik, H.K. & Stroth, U. (2012). Terahertz radiation generation by beating of two spatial-Gaussian lasers in the presence of a static magnetic field. Phys. Rev. E 85, 016401.Google Scholar
Malik, A.K. & Singh, K.P. (2015). High-intensity terahertz generation by nonlinear frequency-mixing of lasers in plasma with DC magnetic field. Laser Part. Beams 33, 519.CrossRefGoogle Scholar
Malik, A.K., Singh, K.P. & Sajal, V. (2014). Highly focused and efficient terahertz radiation generation by photo-mixing of lasers in plasma in the presence of magnetic field. Phys. Plasmas 21, 073104.Google Scholar
Pawar, A.Y., Sonawane, D.D., Erande, K.B. & Derle, D.V. (2013). Terahertz technology and its applications. IEEE Drug Invent. Today 5, 157.Google Scholar
Shen, Y.C., LO, T., Taday, P.F., Cole, B.E., Tribe, W.R. & Kemp, M.C. (2005). Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116.Google Scholar
Siegel, P.H. (2004). THz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52, 2438.Google Scholar
Singh, D. & Malik, H.K. (2014). Terahertz generation by mixing of two super-Gaussian laser beams in collisional Plasma. Phys. Plasmas 21, 083105.Google Scholar
Singh, D. & Malik, H.K. (2015). Enhancement of terahertz emission in magnetized collisional plasma. Plasma Sources Sci. Technol. 24, 4.Google Scholar
Singh, M., Singh, R.K. & Sharma, R.P. (2013). THz generation by cosh-Gaussian lasers in a rippled density plasma. EPL 104, 3.Google Scholar
Sun, X. & Zhang, X.C. (2014). Terahertz radiation in alkali vapor plasmas. Appl. Phys. Lett. 104, 191106.Google Scholar
Tao, H., Padilla, W.J., Zhang, X. & Averitt, R.D. (2011). Recent progress in electromagnetic metamaterial devices for terahertz applications. IEEE J. Sel. Top. Quantum Electron. 17, 92.Google Scholar
Varshney, P., Sajal, V., Singh, K.P., Kumar, R. & Sharma, N.K. (2013). Strong terahertz radiation generation by beating of extra-ordinary mode lasers in a rippled density magnetized plasma. Laser Part. Beams 31, 337.CrossRefGoogle Scholar
Varshney, P., Sajal, V., Singh, K.P., Kumar, R. & Sharma, N.K. (2015). Strong terahertz radiation generation by beating of two x mode spatial triangular lasers in magnetized plasma. Laser Part. Beams 33, 51.Google Scholar
Vodopyanov, K.L. (2008). Optical THz-wave generation with periodically inverted GaAs. Laser Photon. Rev. 2, 11.Google Scholar
Zhong, H., Redo-Sanchez, A. & Zhang, X.C. (2006). Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system. Opt. Express 14, 9130.Google Scholar