Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T21:58:18.006Z Has data issue: false hasContentIssue false

Generation of monoenergetic proton beams by a combined scheme with an overdense hydrocarbon target and an underdense plasma gas irradiated by ultra-intense laser pulse

Published online by Cambridge University Press:  15 October 2014

Weipeng Yao
Affiliation:
Graduate School, China Academy of Engineering Physics, Beijing, Peoples Republic of China
Baiwen Li*
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, Peoples Republic of China
Lihua Cao
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, Peoples Republic of China Key Laboratory of HEDP of Ministry of Education, CAPT, Peking University, Beijing, Peoples Republic of China
Fanglan Zheng
Affiliation:
Key Laboratory of HEDP of Ministry of Education, CAPT, Peking University, Beijing, Peoples Republic of China
Taiwu Huang
Affiliation:
Key Laboratory of HEDP of Ministry of Education, CAPT, Peking University, Beijing, Peoples Republic of China
Chengzhuo Xiao
Affiliation:
Key Laboratory of HEDP of Ministry of Education, CAPT, Peking University, Beijing, Peoples Republic of China
Milos M. Skoric
Affiliation:
National Institute for Fusion Science, Toki, Japan
*
Address correspondence and reprint requests to: Baiwen Li, Institute of Applied Physics and Computational Mathematics, Beijing 100088, Peoples Republic of China. E-mail: [email protected].

Abstract

An optimization scheme for the generation of monoenergetic proton beams by using an overdense hydrocarbon target, followed by an underdense plasma gas, irradiated by an ultra-intense laser pulse is presented. The scheme is based on a combination of a radiation pressure acceleration mechanism and a laser wakefield acceleration mechanism, and is verified by one-dimensional relativistic particle-in-cell (1D PIC) simulations. As compared to the pure hydrogen (H) target, protons in the hydrocarbon target can be pre-accelerated to higher energy and compressed in space due to the existence of the heavy carbon atoms, which provides a better injection process for the successive laser wakefield acceleration in the underdense plasma gas, resulting in the generation of a monoenergetic, tens-of-GeV proton beam. Additionally, for the first time, it is found that the use of the hydrocarbon target can reduce the requirement for laser intensity to generate proton beams with the same energy in this combined scheme, as compared to the use of the pure H target.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412.CrossRefGoogle Scholar
Borghesi, M., Schiavi, A., Campbell, D.H., Haines, M.G., Willi, O., Mackinnon, A.J., Patel, P., Galimberti, M. & Gizzi, L.A. (2003). Proton imaging detection of transient electromagnetic fields in laser-plasma interactions. Rev. Sci. Instrum. 74, 1688.CrossRefGoogle Scholar
Brantov, A., Tikhonchuk, V., Klimo, O., Romanov, D.V., Ter-Avetisyan, S., Schnürer, M., Sokollik, T. & Nickles, P.V. (2006). Quasi-mono-energetic ion acceleration from a homogeneous composite target by an intense laser pulse. Phys. Plasmas. 13, 122705.Google Scholar
Bulanov, S.V., Esirkepov, T.Z., Khoroshkov, V.S., Kuznetsov, A.V. & Pegoraro, F. (2002). Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240.Google Scholar
Chen, M., Pukhov, A., Sheng, Z.M. & Yan, X.Q. (2008). Laser mode effects on the ion acceleration during circularly polarized laser pulse interaction with foil targets. Phys. Plasmas 15, 113103.Google Scholar
Clark, E.L., Krushelnick, K., Davies, J.R., Zepf, M., Tatarakis, M., Beg, F.N., Machacek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000). Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670.CrossRefGoogle ScholarPubMed
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime. Phys. Rev. Lett. 92, 175003.Google Scholar
Liu, T.C., Shao, X., Liu, C.S., He, M.Q., Eliasson, B., Tripathi, V., Su, J.J., Wang, J. & Chen, S.H. (2013). Generation of quasi-monoenergetic protons from thin multi-ion foils by a combination of laser radiation pressure acceleration and shielded Coulomb repulsion. New J. Phys. 15, 025026.CrossRefGoogle Scholar
Maksimchuk, A., Gu, S., Flippo, K. & Umstadter, D. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 4108.CrossRefGoogle ScholarPubMed
Qiao, B., Geissler, M., Kar, S., Borghesi, M. & Zepf, M. (2011). Stable ion radiation pressure acceleration with intense laser pulses. Plasma Phys. Contr. Fusion 53, 124009.Google Scholar
Qiao, B., Zepf, M., Borghesi, M. & Geissler, M. (2009). Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses. Phys. Rev. Lett. 102, 145002.Google Scholar
Qiao, B., Zepf, M., Gibbon, P., Borghesi, M., Dromey, B., Kar, S., Schreiber, J. & Geissler, M. (2011). Conditions for efficient and stable ion acceleration by moderate circularly polarized laser pulses at intensities of 1020W/cm2. Phys. Plasma 18, 043102.Google Scholar
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 013021.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436.Google Scholar
Shearer, J.W., Garrison, J., Wong, J. & Swain, J.E. (1973). Pair production by relativistic electrons from an intense laser focus. Phys. Rev. A 8, 1582.CrossRefGoogle Scholar
Shen, B.F., Zhang, X.M., Sheng, Z.M., Yu, M.Y. & Cary, J. (2009). High-quality monoenergetic proton generation by sequential radiation pressure and bubble acceleration. Phys. Rev. ST Accel. Beams 12, 121301.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542.Google Scholar
Yan, X.Q., Lin, C., Sheng, Z.M., Guo, Z.Y., Liu, B.C., Lu, Y.R., Fang, J.X. & Chen, J.E. (2008). Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 100, 135003.CrossRefGoogle ScholarPubMed
Yu, L.L., Xu, H., Wang, W.M., Sheng, Z.M., Shen, B.F., Yu, W. & Zhang, J. (2010). Generation of tens of GeV quasi-monoenergetic proton beams from a moving double layer formed by ultraintense lasers at intensity 1021–1023 W cm−2. New J. Phys. 12, 045021.CrossRefGoogle Scholar
Zhang, X.M., Shen, B.F., Li, X.M., Jin, Z.Y., Wang, F.C. & Wen, M. (2007). Efficient GeV ion generation by ultraintense circularly polarized laser pulse. Phys. Plasmas 14, 123108.Google Scholar
Zheng, F.L., Wang, H.Y., Yan, X.Q., Tajima, T., Yu, M.Y. & He, X.T. (2012). Sub-TeV proton beam generation by ultra-intense laser irradiation of foil-and-gas target. Phys. Plasmas 19, 023111.Google Scholar