Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T17:11:38.334Z Has data issue: false hasContentIssue false

Generation of Longmuir turbulence and stochastic acceleration in laser beat wave process

Published online by Cambridge University Press:  04 May 2010

Prerana Sharma*
Affiliation:
Ujjain Engineering College, Ujjain, India
R.P. Sharma
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, New Delhi, India
*
Address correspondence and reprint requests to: Prerana Sharma, Ujjain Engineering College, Indore Road, Ujjain (M.P.) 465010, India. E-mail: [email protected]

Abstract

This paper investigates the filamentation process of two co-axially propagating laser beams in collisionless plasma. On account of the ponderomotive nonlinearity, two laser beams affect the dynamics of each other, and cross-focusing takes place. The initial Gaussian laser beams are found to have non-Gaussian structures in the plasma. Using the laser beam and the plasma parameters, appropriate for the beat wave process, the filaments of the laser beams have been studied. Using these results, the Langmuir wave excitation at the beat wave frequency (when the laser beams are having filamentary structures) has been studied. The excited LW is modeled with the help of a driven oscillator and it is found that the excited Langmuir wave is not a plane wave; rather it has a turbulent structure. We have obtained the power spectrum of the excited beat wave (Langmuir wave), and calculated the spectral index. The stochastic electron acceleration has been studied in the presence of this Langmuir turbulence and relevance of these results to the beat wave process has been pointed out.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Soviet Phys. Usp. 10, 609636.CrossRefGoogle Scholar
Baiwen, L.I., Ishiguro, S., Škoric, M.M., Takamaru, H. & Sato, T. (2004). Acceleration of high-quality, well-collimated return beam of relativistic electrons by intense laser pulse in a low-density plasma. Laser Part. Beams 22, 307314.Google Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Futchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high intensity laser matter interactions. Laser Part. Beams 25, 161167.CrossRefGoogle Scholar
Canaud, B., Fortin, X., Garaude, F., Meyer, C. & Philippe, F. (2004). Progress in direct-drive fusion studies for the laser mégajoule. Laser Part. Beams 22, 109114.CrossRefGoogle Scholar
Darrow, C., Umstadter, D., Katsouleas, T., Mori, W.B., Clayton, C.E. & Joshi, C. (1986). Saturation of beat excited plasma waves by electrostatic mode coupling. Phys. Rev. Lett. 56, 2629.Google Scholar
Davies, J.R., Fajardo, M., Kozlova, M,. Mocek, T., Polan, J. & Rus, B. (2009). filamented plasmas in laser ablation of solids. Plasma Phys. Contr. Fusion 51, 035013.CrossRefGoogle Scholar
Deutsch, C., Bret, A., Firpo, M.C., Gremillet, L., Lefebrave, E. & Lifschitz, A. (2008). Onset of coherent electromagnetic structures in the relativistic electron beam deuterium–tritium fuel interaction of fast ignition concern. Laser Part. Beams 26, 157165.Google Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, K.M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 2483.Google Scholar
Drake, R.P., Campbell, E.M. & Estrabrook, K.G. (1988). Direct evidence of ponderomotive Filamentation in laser-produced plasma. Phys. Rev. Lett. 61, 23362339.Google Scholar
Dromey, B., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kar, S., Kneip, S., Markey, K., Nagel, S.R., Willingale, L., Mckenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2009). Third harmonic order imaging as a focal spot diagnostic for high intensity laser solid interactions. Laser Part. Beams 27, 243248.CrossRefGoogle Scholar
Esarey, E., Ting, A. & Sprangle, P. (1988). Relativistic focusing and beat wave phase velocity control in the plasma beat wave accelerator. Appl. Phys. Lett. 53, 1266.Google Scholar
Fuches, V., Krapehev, V., Ram, A. & BERS, A. (1985). Diffusion of electrons by coherent wave packets, Physica 14, 141160.Google Scholar
Giulietti, D., Galimberti, M., Giulietti, A., Gizzi, L.A., Labate, L. & Tomassini, P. (2005). The laser-matter interaction meets the high energy physics: Laser-plasma accelerators and bright X/γ-ray sources. Laser Part. Beams 23, 309314.Google Scholar
Hong, W., He, Y., Wen, T., Du, H., Teng, J., Qing, X., Huang, Z., Huang, W., Liu, H., Wang, X., Huang, X., Zhu, Q., Ding, Y. & Peng, H. (2009). Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse. Laser Particle Beams 27, 1926.Google Scholar
Hora, H. (1969). self focusing of laser beams in plasma by ponderomotive forces. Opto-electr. Z. phys. 226, 156159.Google Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Particle Beams 25, 3745.Google Scholar
Hora, H. & Hoffmann, D.H.H. (2008). Using petawatt laser pulses of picosecond duration for detailed diagnostics of creation and decay processes of B-mesons in the LHC. Laser Part. Beams 26, 503505.Google Scholar
Ichimaru, S. (1973). Basic principles of Plasma Physics. Reading, MA: Benjamin.Google Scholar
Imasaki, K. & Li, D. (2008). An approach of laser induced nuclear fusion. Laser Particle Beams, 26, 37.Google Scholar
Kanapathipillai, M. (2006). Nonlinear absorption of ultra short laser pulses by clusters. Laser Particle Beams 24, 9.Google Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Particle Beams 25, 371377.CrossRefGoogle Scholar
Kaw, P.K., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 16, 15221525.Google Scholar
Kline, J.L., Montgomery, D.S., Rousseaux, C., Baton, S.D., Tassin, V., Hardin, R.A., Flippo, K.A., Johnson, R.P., Shimada, T. Yin, L., Albright, B.J., Rose, H.A. & Amiranoff, F. (2009). Investigation of stimulated Raman scattering using a short-pulse diffraction limited laser beam near the instability threshold. Laser Particle Beams 27, 185190.Google Scholar
Krall, N.A. & Trivelpiece, A.W. (1973). Principles of Plasma Physics. New-York: McGraw-Hill.CrossRefGoogle Scholar
Kruer, W.L. (1988). The Physics of Laser Plasma Interaction. New York: Addison-Wesley Publishing.Google Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Particle Beams 26, 397409.CrossRefGoogle Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Velyhan, A., Ullschmied, J., Gammino, S., Torrisi, L., Badziak, J., Parys, P., Rosinski, M., Ryc, L. & Wolowski, J. (2008). Angular distribution of ions emitted from laser plasma produced at various irradiation angles and laser intensities. Laser Particle Beams 26, 555565.Google Scholar
Liu, J.L., Cheng, X.B., Qian, B.L., Ge, B., Zhang, J.D. & Wang, X.X. (2009). Study on strip spiral Blumlein line for the pulsed forming line of intense electron-beam accelerators. Laser Particle Beams 27, 95102.Google Scholar
Malekynia, B., Ghoranneviss, M., Hora, H. & Miley, G.H. (2010). Collective alpha particle stopping for reduction of the threshold for laser fusion using nonlinear force driven plasma blocks. Laser Particle Beams 27, 233241.Google Scholar
Mulser, P., Kanathpillai, M. & Hofmann, D.H.H. (2005). Two very efficient nonlinear laser absorption mechanisms in clusters. Phys. Rev. Lett. 95, 103401.Google Scholar
Nakamura, T., Mima, K., Sakagami, H., Johzaki, T. & Nagatomo, H. (2008). Generation and confinement of high energy electrons generated by irradiation of ultra-intense short laser pulses onto cone targets. Laser Particle Beams 26, 207212.Google Scholar
Nicholas, D.J. & Sajjadi, S.G. (1986). Numerical simulation of filamentation in laser-plasma interaction. J. Phys. D: Appl. Phys. 19, 737749.Google Scholar
Patin, D., Bourdier, A. & Lefebvre, E. (2005 a). Stochastic heating in ultra high intensity laser–plasma interaction. Laser Part. Beams 23, 297302.Google Scholar
Patin, D., Bourdier, A. & Lefebvre, E. (2007). Stochastic heating in ultra high intensity laser–plasma interaction. Laser Part. Beam 25, 169180.Google Scholar
Patin, D., Bourdier, A. & Lefebvre, E. (2005 b). Stochastic heating in ultra high intensity laser–plasma interaction. Laser Part. Beams 23, 599.Google Scholar
Patin, D., Lefebvre, E., Bourdier, A. & Humières, E.D. (2006). Stochastic heating in ultra high intensity laser–plasma interaction: Theory and PIC code simulations. Laser Part. Beam 24, 223230.Google Scholar
Prasad, R., Singh, R. & Tripathi, V.K. (2009). Effect of axial magnetic field and ion space charge on laser beat wave acceleration and surfatron acceleration of electrons. Laser Part. Beams 27, 459464.Google Scholar
Regan, S.P., Bradley, D.K., Chirokikh, A.V., Craxton, R.S., Meyerhofer, D.D., Seka, W., Short, R.W., Simon, A., Town, R.P., Yaakobi, B., Carill, J.J. III & Drake, R.P. (1999). Laser-plasma interactions in long-scale-length plasmas under direct-drive National Ignition Facility conditions. Phys. Plasmas 6, 2072.Google Scholar
Rozmus, W., Sharma, R.P., Samson, J.C. & Tighe, W. (1987). Non linear evolution of stimulated Raman scattering in homogeneous plasmas. Phys. Fluids 30, 2181.CrossRefGoogle Scholar
Sharma, R.P., Sharma, P. & Chauhan, P.K. (2007). Effect of laser beam filamentation on plasma wave localization and electron heating. Phys. Plasmas 14, 103112.CrossRefGoogle Scholar
Sharma, R.P. & Sharma, P. (2009). Effect of laser beam filamentation on second harmonic spectrum in laser plasma interaction. Laser Particle Beams 27, 157169.Google Scholar
Shi, Y.J. (2007). Laser electron accelerator in plasma with adiabatically attenuating density. Laser Particle Beams 25, 259265.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169.Google Scholar
Stancalie, V. (2009). Theoretical calculation of atomic data for plasma spectroscopy. Laser Particle Beams 27, 345354.Google Scholar
Tajima, T., Kishimoto, Y. & Masaki, T. (2001). Cluster fusion. Phys. Scripta T89, 4648.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.Google Scholar