Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T20:25:40.245Z Has data issue: false hasContentIssue false

Generation of hemispherical fast electron waves in the presence of preplasma in ultraintense laser-matter interaction

Published online by Cambridge University Press:  31 May 2013

X. H. Yang
Affiliation:
College of Science, National University of Defense Technology, Changsha, China
Y. Y. Ma*
Affiliation:
College of Science, National University of Defense Technology, Changsha, China
H. Xu
Affiliation:
State Key Lab of High Performance Computing, School of Computer Science, National University of Defense Technology, Changsha, China
F. Q. Shao
Affiliation:
College of Science, National University of Defense Technology, Changsha, China
M.Y. Yu
Affiliation:
Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China Institut für Theoretische Physik I, Ruhr-Universität Bochum, Bochum, Germany
Y. Yin
Affiliation:
College of Science, National University of Defense Technology, Changsha, China
H. B. Zhuo
Affiliation:
College of Science, National University of Defense Technology, Changsha, China
M. Borghesi
Affiliation:
Centre for Plasma Physics, School of Mathematics and Physics, Queen's University of Belfast, Belfast, United Kingdom Institute of Physics of the ASCR, ELI-Beamlines project, Prague, Czech Republic
*
*Address correspondence and reprint requests to: Y. Y. Ma, College of Science, National University of Defense Technology, Changsha 410073, China. E-mail: [email protected]

Abstract

Hemispherical electron plasma waves generated from ultraintense laser interacting with a solid target having a subcritical preplasma is studied using particle-in-cell simulation. As the laser pulse propagates inside the preplasma, it becomes self-focused due to the response of the plasma electrons to the ponderomotive force. The electrons are mainly heated via betatron resonance absorption and their thermal energy can become higher than the ponderomotive energy. The hot electrons easily penetrate through the thin solid target and appear behind it as periodic hemispherical shell-like layers separated by the laser wavelength.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412439.CrossRefGoogle Scholar
Bulanov, S.S., Maksimchuk, A., Krushelnick, K., Popov, K.I., Bychenkov, V.Yu. & Rozmusc, W. (2010). Ensemble of ultra-high intensity attosecond pulses from laserCplasma interaction. Phys. Lett. A 374, 476.CrossRefGoogle Scholar
Bulanov, S.S., Maksimchuk, A., Schroeder, C.B., Zhidkov, A.G., Esarey, E. & Leemans, W.P. (2012). Relativistic spherical plasma waves. Phys. Plasmas 19, 020702.CrossRefGoogle Scholar
Cai, H.B., Mima, K., Sunhara, A., Johzaki, T., Nagatomo, H., Zhu, S.P. & He, X.T. (2010). Prepulse effects on the generation of high energy electrons in fast ignition scheme. Phys. Plasmas 17, 023106.CrossRefGoogle Scholar
Davies, J.R. (2009). Laser absorption by overdense plasmas in the relativistic regime. Plasma Phys. Control. Fusion 51, 014006.CrossRefGoogle Scholar
Debayle, A., Honrubia, J.J., D'Humières, E. & Tikhonchuk, V.T. (2010). Characterization of laser-produced fast electron sources for fast ignition. Plasma Phys. Control. Fusion 52, 124024.CrossRefGoogle Scholar
Deutsch, C. & Didelez, J.P. (2011). Inertial confinement fusion fast ignition with ultra-relativistic electron beams. Laser Part. Beams 29, 3944.CrossRefGoogle Scholar
Friou, A., Lefebvre, E. & Gremillet, L. (2012). Channeling dynamics of relativistic-intensity laser pulses. Phys. Plasmas 19, 022704 (2012).CrossRefGoogle Scholar
Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-ter-vehn, J., Pretzler, G., Thirolf, P., Habs, D. & Witte, K.J. (2000). Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 4772.Google Scholar
Gibbon, P. (2005). Short Pulse Laser Interactions with Matter. London: Imperial College Press.CrossRefGoogle Scholar
Kemp, A.J., Cohen, B.I. & Divol, L. (2010). Integrated kinetic simulation of laser-plasma interactions, fast-electron generation, and transport in fast ignition. Phys. Plasmas 17, 056702.CrossRefGoogle Scholar
Kemp, A.J., Sentoku, Y. & Tabak, M. (2009). Hot-electron energy coupling in ultraintense laser-matter interaction. Phys. Rev. E 79, 066406.CrossRefGoogle ScholarPubMed
Kruer, W.L. (1985). J × B heating by very intense laser light. Phys. Fluids 28, 430.CrossRefGoogle Scholar
Lin, X.X., Li, Y.T., Liu, B.C., Liu, F., Du, F., Wang, S.J., Chen, L.M., Zhang, L., Liu, X., Liu, X.L., Wang, Z.H., Ma, J.L., Lu, X., Dong, Q.L., Wang, W.M., Sheng, Z.M.,, Wei, Z.Y. & Zhang, J. (2012). Directional transport of fast electrons at the front target surface irradiated by intense femtosecond laser pulses with preformed plasma. Laser Part. Beams 30, 3943.CrossRefGoogle Scholar
Lu, G.M., Liu, Y., Zheng, S., Wang, Y.M., Yu, W. & Yu, M.Y. (2010). Exact relativistic plasma waves in an electron-positron plasma. Astrophys. Space Sci. 330, 73.CrossRefGoogle Scholar
Luttikhof, M.J.H., Khachatryan, A.G., Van goor, F.A. & Boller, K.J. (2010). Generating ultrarelativistic attosecond electron bunches with laser wakefield accelerators. Phys. Rev. Lett. 105, 124801.CrossRefGoogle ScholarPubMed
Ma, T., Sawada, H., Patel, P.K., Chen, C.D., Divol, L., Higginson, D.P., Kemp, A.J., Key, M.H., Larson, D.J., Le pape, S., Link, A., Macphee, A.G., Mclean, H.S., Ping, Y., Stephens, R.B., Wilks, S.C. & Beg, F.N. (2012). Hot electron temperature and coupling efficiency scaling with prepulse for cone-guided fast ignition. Phys. Rev. Lett. 108, 115004.CrossRefGoogle ScholarPubMed
Ma, Y.Y., Sheng, Z.M., Li, Y.T., Chang, W.W., Yuan, X.H., Chen, M., Wu, H.C., Zheng, J. & Zhang, J. (2006). Dense quasi-monoenergetic attosecond electron bunches from laser interaction with wire and slice targets. Phys. Plasmas 13, 110702.CrossRefGoogle Scholar
Macphee, A.G., Divol, L., Kemp, A.J., Akli, K.U., Beg, F.N., Chen, C.D., Chen, H., Hey, D.S., Fedosejevs, R.J., Freeman, R.R., Henisian, M., Key, M.H., Le pape, S., Link, A., Ma, T., Mackinnon, A.J., Ovchinnikov, V.M., Patel, P.K., Phillips, T.W., Stephens, R.B., Tabak, M., Town, R., Tsui, Y.Y., Van woerkom, L.D., Wei, M.S. & Wilks, S.C. (2010). Limitation on prepulse level for cone-guided fast-ignition inertial confinement fusion. Phys. Rev. Lett. 104, 055002.CrossRefGoogle ScholarPubMed
Nilson, P.M., Solodov, A.A., Myatt, J.F., Theobald, W., Jaanimagi, P.A., Gao, L., Stoeckl, C., Craxton, R.S., Delettrez, J.A., Yaakobi, B., Zuegel, J.D., Kreschwitz, B.E., Dorrer, C., Kelly, J.H., Akli, K.U., Patel, P.K., Mackinnon, A.J., Betti, R., Sangster, T.C. & Meyerhofer, D.D. (2011). Scaling hot-electron generation to long-pulse, high-intensity laser-solid interactions. Phys. Plasmas 18, 056703 (2011).CrossRefGoogle Scholar
Naumova, N., Sokolov, I., Nees, J., Maksimchuk, A., Yanovsky, V. & Mourou, G. (2004). Attosecond electron bunches. Phys. Rev. Lett. 93, 195003.CrossRefGoogle ScholarPubMed
Nuter, R., Gremillet, L., Combis, P., Drouin, M., Lefebvre, E., Flacco, A. & Malka, V. (2008). Influence of a preplasma on electron heating and proton acceleration in ultraintense laser-foil interaction. J. Appl. Phys. 104, 103307.CrossRefGoogle Scholar
Ostrovskii, L.A. (1975). Some “moving boundaries paradoxes” in electrodynamics. Sov. Phys. Usp. 18, 452.CrossRefGoogle Scholar
Paradkar, B.S., Wei, M.S., Yabuuchi, T., Stephens, R.B., Larsen, J.T. & Beg, F.N. (2010). Numerical modeling of fast electron generation in the presence of preformed plasma in laser-matter interaction at relativistic intensities. Phys. Rev. E 83, 046401.Google Scholar
Pfeifer, T., Spielmann, C. & Gerber, G. (2006). Femtosecond x-ray science. Rep. Prog. Phys. 69, 443.CrossRefGoogle Scholar
Pretzler, G., Saemann, A., Pukhov, A., Rudolph, D., Schätz, T., Schramm, U., Thirolf, P., Habs, D., Eidmann, K., Tsakiris, G.D., Meyer-ter-vehn, J. & Witte, K.J. (1998). Neutron production by 200 mJ ultrashort laser pulses. Phys. Rev. E 58, 1165.CrossRefGoogle Scholar
Pukhov, A. & Meyer-ter-vehn, J. (1996). Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 3975.CrossRefGoogle ScholarPubMed
Pukhov, A., Sheng, Z.M. & Meyer-ter-vehn, J. (1999). Particle acceleration in relativistic laser channels. Phys. Plasmas 6, 2847.CrossRefGoogle Scholar
Sakagami, H., Sunahara, A., Johzaki, T. & Nagatomo, H. (2012). Effects of long rarefied plasma on fast electron generation for FIREX-I targets. Laser Part. Beams 30, 103109.CrossRefGoogle Scholar
Sentoku, Y., Kruer, W., Matsuokal, M. & Pukhov, A. (2006). Laser hole boring and hot electron generation in the fast ignition scheme. Fusion Sci. Technol. 49, 278296.CrossRefGoogle Scholar
Sheng, Z.M., Mima, K., Sentoku, Y., Jovanovi, M.S., Tauguchi, T., Zhang, J. & Meyer-ter-vehn, J. (2002). Stochastic heating and acceleration of electrons in colliding laser fields in plasma. Phys. Rev. Lett. 88, 055004.CrossRefGoogle ScholarPubMed
Sheng, Z.M., Zhang, J. & Umstadter, D. (2003). Plasma density gratings induced by intersecting laser pulses in underdense plasmas. Appl. Phys. B 77, 673.CrossRefGoogle Scholar
Sun, G.Z., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Wang, Y.M., Yu, M.Y. & Chen, Z.Y. (2011). Coherent relativistic wake wave of a charged object moving steadily in a plasma. Phys. Scr. 31, 155.Google Scholar
Wang, Y.M., Yu, M.Y., CHEN, Z.Y. & Lu, G.M. (2013). Excitation of large amplitude wake electron oscillations in adiabatic plasma. Laser Part. Beams 84, 025501.Google Scholar
Wei, M.S., Solodov, A.A., Pasley, J., Stephens, R.B., Welch, D.R. & Beg, F.N. (2008). Study of relativistic electron beam production and transport in high-intensity laser interaction with a wire target by integrated LSP modeling. Phys. Plasmas 15, 083101.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383.CrossRefGoogle ScholarPubMed
Wu, H.C. & Meyer-ter-vehn, J. (2012). Giant half-cycle attosecond pulses. Nature Photonics 6, 304.CrossRefGoogle Scholar
Xu, H., Chang, W.W. & Zhuo, H.B. (2002). Parallel programming of 2D3V PIC under distributed-memory parallel enviroments. Chin. J. Comput. Phys. 19, 305 (in Chinese).Google Scholar
Yang, X.H., Ma, Y.Y., Shao, F.Q., Xu, H., Yu, M.Y., Gu, Y.Q., Yu, T.P., Yin, Y., Tian, C.L. & Kawata, S. (2010). Collimated proton beam generation from ultraintense laser-irradiated hole target. Laser Part. Beams 28, 319325.CrossRefGoogle Scholar
Yang, X.H., Xu, H., Ma, Y.Y., Shao, F.Q., Yin, Y., Zhuo, H.B., Yu, M.Y. & Tian, C.L. (2011). Propagation of attosecond electron bunches along the cone-and-channel target. Phys. Plasmas 18, 023109.CrossRefGoogle Scholar
Yu, W., Bychenkov, V., Sentoku, Y., Yu, M.Y., Sheng, Z.M. & Mima, K. (2000). Electron acceleration by a short relativistic laser pulse at the front of solid targets. Phys. Rev. Lett. 85, 570.CrossRefGoogle Scholar
Yu, T.P., Chen, M. & Pukhov, A. (2009). High quality GeV proton beams from a density-modulated foil target. Laser Part. Beams 27, 611617.CrossRefGoogle Scholar
Zhuo, H.B., Jin, Z., Yu, M.Y., Sheng, Z.M., Xu, H., Ma, Y.Y., Yin, Y., Shao, F.Q., Zhou, W.M. & Kodama, R. (2012). Strong mid-infrared radiation from self-guided fast electron bunch propagating along a grated target surface in laser-solid interaction. Phys. Plasmas 19, 043108.CrossRefGoogle Scholar