Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-16T15:04:35.070Z Has data issue: false hasContentIssue false

Generation of beating wave by multi-coaxial relativistic backward wave oscillator

Published online by Cambridge University Press:  19 September 2013

Y. Teng*
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, Shaanxi, People's Republic of China
T.Z. Liang
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, Shaanxi, People's Republic of China
J. Sun
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, Shaanxi, People's Republic of China
*
Address correspondents and reprint requests to: Y. Teng, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi, People's Republic of China. E-mail: [email protected]

Abstract

Multi-coaxial relativistic backward wave oscillator that generates the beating wave of high power microwave pulse driven by a single accelerator and a single guiding magnet system is presented. Making use of the coaxial annular cathodes that can synchronously produce three annular beams at one shot, the average power of 5.88 GW consisting of two frequency components 9.0 and 9.7 GHz is obtained under the diode voltage and current 724 and 19.57 kA, corresponding to the conversion efficiency 41.5%. The conversion efficiency and the beating frequency are considerably stable with the diode voltage. The coaxial transmission supporter developed from our previous experimental research is employed to conductively connect the coaxial structure and to incoherently combine the microwave pulse of two frequencies with little reflection. It is found that the equipotential connection of the coaxial structure modifies the field distribution in the diode structure to facilitate the operation of the coaxial annular cathodes. The coaxial cathodes of different lengths are proved to be efficient at depressing the space charge effect in order to prevent the explosive emission of the inner cathode from being shielded by the outer annular beams.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chang, C., Liu, G.Z., Fang, J.Y., Tang, C.X., Huang, H.J., Chen, C.H. & Zhang, Q.Y. (2010). Field distribution, HPM multipactor, and plasma discharge on the periodic triangular surface. Laser Part. Beams 28, 185193.CrossRefGoogle Scholar
Chen, C.H., Liu, G.Z., Huang, W.H., Song, Z.M., Fan, J.P. & Wang, H.J. (2002). A repetitive X-band relativistic backward-wave oscillator. IEEE Trans. Plasma Sci. 30, 11081111.CrossRefGoogle Scholar
Cruz, E.J., Hoff, B.W., Pengvanich, P., Lau, Y.Y., Gilgenbach, R.M. & Luginsland, J.W. (2009). Experiments on peer-to-peer locking of magnetrons. Appl. Phys. Lett. 95, 191503.CrossRefGoogle Scholar
El'chaninov, A.A., Korovin, S.D., Rostova, V.V., Pegel, I. V., Mesyats, G.A., Rukin, S.N., Shpak, V.G., Yalandin, M.I. & Ginzburg, N.S. (2003). Production of short microwave pulses with a peak power exceeding the driving electron beam power. Laser Part. Beams 21, 187196.CrossRefGoogle Scholar
El'chaninov, A.A., Klimova, A.I., Koval'chuk, O.B., Mesyats, G.A., Pegel, I.V., Romanchenko, I.V., Rostova, V.V., Sharypov, K.A. & Yalandin, M.I. (2011). Coherent summation of power of nanosecond relativistic microwave oscillators. Techn.Phys. 56, 121126.CrossRefGoogle Scholar
Fang, J.Y., Liu, G.Z., Li, P., Wang, H.J. & Huang, W.H. (1999). Experimental study of the high power microwave pulse width effect. Hi. Power Laser Part. Beams 5, 639642.Google Scholar
Gao, L., Qian, B.L. & Ge, X.J. (2011). A compact P-band coaxial relativistic backward wave oscillator with only three periods slow wave structure. Phys. Plasmas 18, 103111.CrossRefGoogle Scholar
Ge, X.J., Zhong, H.H., Qian, B.L., Zhang, J., Liu, L., Gao, L., Yuan, C.W. & He., J.T. (2010 a). Asymmetric-mode competition in a relativistic backward wave oscillator with a coaxial slow-wave structure. Appl. Phys. Lett. 97, 241501.Google Scholar
Ge, X.J., Zhong, H.H., Qian, B.L., Zhang, J., Gao, L., Jin, Z.X., Fan, Y.W. & Yang., J.H. (2010 b). An L-band coaxial relativistic backward wave oscillator with mechanical frequency tunability. Appl. Phys. Lett. 97, 101503.CrossRefGoogle Scholar
Giri, D.V. & Tesche, F.M. (2004). Classification of intentional electromagnetic environments (IEME). IEEE Trans. Electromagn. Compat. 46, 322328.CrossRefGoogle Scholar
Kim, D.H., Jung, H.C., Min, S.H., Shin, S.H. & Park, G.S. (2007). Dynamics of mode competition in a gigawatt-class magnetically insulated line oscillator. Appl. Phys. Lett. 90, 124103.Google Scholar
Kovalchuk, B.M., Kharlou, A.V., Zherlitsyn, A.A., Kumpjak, E.V., Tsoy, N.V., Vizir, V.A. & Smorudov, G.V. (2009). 40 GW linear transformer driver stage for pulse generators of mega-ampere range. Laser Part. Beams 27, 371378.CrossRefGoogle Scholar
Kovalev, N.F., Nechaev, V.E., Petelin, M.I. & Zaitsev, N.I. (1998). Scenario for output pulse shortening in microwave generators driven by relativistic electron beams. IEEE Trans. Plasma Sci. 26, 246250.CrossRefGoogle Scholar
Levush, B., Antonsen, T.M., Bromborsky, A., Lou, W.R. & Carmel, Y. (1992). Theory of relativistic backward-wave oscillators with end reflections. IEEE Trans. Plasma Sci. 20, 263280.CrossRefGoogle Scholar
Li, G.L., Yuan, C.W., Zhang, J.Y., Shu, T. & Zhang, J. (2008 a). A diplexer for gigawatt class high power microwave. Laser Part. Beams 26, 371377.CrossRefGoogle Scholar
Li, G.L., Shu, T., Zhang, J., Yang, J.H. & Yuan, C.W. (2010). Generation of gigawatt level beat waves. Appl. Phys. Lett. 96, 234102.CrossRefGoogle Scholar
Li, Z.H. (2008 b). Investigation of an oversized backward wave oscillator as a high power microwave generator. Appl. Phys. Lett. 92, 054102.Google Scholar
Liu, G.Z. (2002). Numerical simulation research on a relativistic high power microwave device wit h coaxial slow wave structure. Proc. 5th High Power Microwave Conf. Zhuhai, China, 26.Google Scholar
Liu, G.Z., Xiao, R.Z., Chen, C.H., Shao, H., Hu, Y.M. & Wang, H.J. (2008). A Cerenkov generator with coaxial slow wave structure. J. Appl. Phys. 103, 093303.CrossRefGoogle Scholar
Liu, G.Z., Sun, J., Shao, H., Chen, C.H. & Zhang, X.W. (2009). Research on an improved explosive emission cathode. J. Phys. D: Appl. Phys. 42, 125204.CrossRefGoogle Scholar
Liu, J.L., Yin, Y., Ge, B., Zhan, T.W., Chen, X.B., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007). An electron-beam accelerator based on spiral water PFL. Laser Part. Beams 25, 593599.CrossRefGoogle Scholar
Nation, J.A. (1970). On the coupling of a high-current relativistic beam to a slow wave structure. Appl. Phys. Lett. 17, 491494.CrossRefGoogle Scholar
Parker, R.K., Abrams, R.H., Danly, B.G. & Levush, B. (2002). Vacuum electronics. IEEE Tran. Microwave Theory Tech. 50, 835845.CrossRefGoogle Scholar
Peng, J.C., Su, J.C., Song, X.X., Wang, L.M., Pan, Y.F., Zhang, X.B., Guo, W.H., Huang, W.H., Fang, J.P., Li, R., Sun, X., Zhao, L., Wang, Y. & Liu, G.Z. (2010). Progress on a 40 GW repetitive pulsed accelerator. Hi. Power Laser and Part. Beams 22, 712716.CrossRefGoogle Scholar
Polevin, S.D., Korovin, S.D., Kovalchuk, B.M., Karlik, K.V., Kurkan, I.K., Ozur, G.E., Pegel, I.V., Proskurovsky, D.I., SukhovM., Yu. M., Yu. & Volkov, S.N. (2004). Pulse Lengthening of S-Band Resonant Relativistic BWO. Proc. 13th International Symposium on High Current Electronics. Tomsk, Russia, 245249.Google Scholar
Sun, J., Liu, G.Z., Lin, Y.Z. & Xiao, R.Z. (2005). Numerical simulation of electric field enhancement factor of metallic microprotrusion. Hi. Power Laser and Part. Beams 17, 11831186.Google Scholar
Swegle, J.A. & Benford, J.N. (1998). High-power microwaves at 25 years: The current state of development. Proc. 12th International conf. on High-power Particle Beams. Haifa, Israel, 1, 149152.Google Scholar
Swegle, J.A., Poukey, J.W. & Leifeste, G.T. (1985). Backward wave oscillators with rippled wall resonators-Analytic theory and numerical simulation. IEEE Trans. Phys. Fluids. 28, 28822894.CrossRefGoogle Scholar
Tang, Y.F., Meng, L., Li, H.L., Zheng, L., Wang, B. & Zhang, F.N. (2013). Design of a high-efficiency dual-band coaxial relativistic backward wave oscillator with variable coupling impedance and phase velocity. Laser Part. Beams 28, 18.Google Scholar
Teng, Y., Liu, G.Z., Shao, H. & Tang, C.X. (2009). A new reflector designed for efficiency enhancement of CRBWO. IEEE Trans. Plasma Sci. 6, 10621068.CrossRefGoogle Scholar
Teng, Y., Xiao, R.Z., Liu, G.Z., Tang, C.X., Chen, C.H. & Shao, H. (2010). Starting current of coaxial relative backward wave oscillator. Phys. Plasmas 17, 063108.CrossRefGoogle Scholar
Teng, Y., Xiao, R.Z., Song, Z.M., Jun, J., Chen, C.H. & Shao, H. (2011 a). High-efficiency coaxial relativistic backward wave oscillator. Rev. Sci. Instrum. 82, 024701.CrossRefGoogle ScholarPubMed
Teng, Y., Xiao, R.Z., Song, Z.M., Sun, J., Chen, C.H. & Shao, H. (2011 b). Efficiency Enhancement of RBWO by introduction of coaxial rippled inner conductor. Proc. 25th Asia-Pacific Microwave Conf. Melbourne, Australia, 215218.Google Scholar
Teng, Y., Song, W., Sun, J., Xiao, R.Z., Song, Z.M., Zhang, L.G., Zhang, Z.Q., Zhang, L.J., Zhang, Y.C., Li, J.W. & Fang, J.Y. (2012). Phase locking of high power relativistic backward wave oscillator using priming effect. J. Appl. Phys. 111, 043303.CrossRefGoogle Scholar
Teng, Y., Chen, C.H., Shao, H., Sun, J., Song, Z.M., Xiao, R.Z. & Du, Z.Y. (2013 a) Design and Efficient Operation of a Coaxial RBWO. Laser Part. Beams 31, 321331.CrossRefGoogle Scholar
Teng, Y., Sun, J., Chen, C.H. & Shao, H. (2013 b). Microwave generation enhancement of X-band CRBWO by use of coaxial dual annular cathodes. AIP Advan. 3, 072130.Google Scholar
Thumm, M. (2009). History, present status and future of gyrotrons. Proc. 10th International Vacuum Electronic Conf. Rome, Italy, 1, 3740.Google Scholar
Totmeninov, E.M., Kitsanov, S.A. & Vykhodtsev, P.V. (2011). Repetitively pulsed relativistic Cherenkov microwave oscillator without a guiding magnetic field. IEEE Trans. Plasma Sci. 39, 11501153.CrossRefGoogle Scholar
Wang, D., Qin, F., Chen, D.B., Wen, J. & Jin, X. (2011). X band bifrequency coaxial relativistic backward wave oscillator. AIP Advan. 1, 042156.Google Scholar
Zhou, J., Liu, D.G., Liao, C. & Li, Z.H. (2009). An efficient code for electromagnetic PIC modeling and simulation. IEEE Trans. Plasma Sci. 37, 20022011.CrossRefGoogle Scholar