Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T01:29:35.605Z Has data issue: false hasContentIssue false

General features of highly charged ion generation in laser-produced plasmas

Published online by Cambridge University Press:  09 March 2009

I.V. Roudskoy
Affiliation:
Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia

Abstract

The simple physical model of highly charged ion generation in plasma produced by laser irradiation with long pulse duration (>1 ns) and moderate intensities (<10152 W/cm2μm2) is presented. In the frame of a single theory, most of the experimental results on plasma diagnostics are described in total. It is shown that plasma temperatures, ion charge states, and ion velocities as well as angular distributions of highly charged ions can be explained with good accuracy by collisional absorption of laser energy, hydrodynamic acceleration of forming plasma, and three-body recombination through highly exited levels during plasma expansion into vacuum. The general scalings for plasma parameters are derived on the basis of the model proposed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afanasiev, Ju.V. et al. 1976 Z. Exp. Teor Fis. (JETP) 71, 594.Google Scholar
Afrosimov, V.V. et al. 1984 Pis'ma Z. Techn. Fiz. (JTP Lett.) 10, 1017.Google Scholar
Anuchin, M.G. et al. 1989 Kv. Elektronika (Quant. Electron.) 16, 311.Google Scholar
Barabash, L.Z. et al. 1984 Laser Part. Beam 2, 49.CrossRefGoogle Scholar
Barabash, L.Z. et al. 1989 Atomnaja Energija (Atomic Energy) 66, 107.Google Scholar
Basov, N.G. et al. 1983 Z. Exp. Teor Fis. (JETP) 84, 564.Google Scholar
Basov, N.G. et al. 1986 Heating and Compression of Thermonuclear Targets by Laser Beams. (Cambridge University Press, New York).Google Scholar
Demchenko, N.N. 1988 Kv. Elektronika (Quant. Electron.) 15, 1305.Google Scholar
Goforth, R.R. & Hammerling, P. 1976 J. Appl. Phys. 47, 3918.CrossRefGoogle Scholar
Golubev, A.A. et al. 1983 Preprint ITEP-175 (Moscow).Google Scholar
Golubev, A.A. 1984 Kv. Elektronika (Quant. Electron.) 11, 1854.Google Scholar
Golubev, A.A. et al. 1988 Preprint ITEP-134 (Moscow).Google Scholar
Gurevich, A.V. & Pitaevsky, L.A. 1964 Z. Exp. Teor. Fiz. (JETP) 46, 1281.Google Scholar
Gus'kov, S.Yu. et al. 1983 Kv. Elektronika (Quant. Electron.) 10, 802.Google Scholar
Hora, H. et al. 1992 Chech. J. Phys. 42, 927.Google Scholar
Kozochkin, S.M.et al. 1993 Preprint IAE-5635/7 (Moscow).Google Scholar
Latyshev, S.V. & Roudskoy, I.V. 1985 Fiz. Plasmy (Plasma Phys.) 11, 1175.Google Scholar
Latyshev, S.V. & Roudskoy, I.V. 1986 Preprint ITEP-2 (Moscow).Google Scholar
Latyshev, S.V. & Roudskoy, I.V. 1987 Preprint ITEP-120 (Moscow).Google Scholar
McWirter, R. 1965 Plasma Diagnostic Techniques, Huddlestone, R.H. and Leonard, S.L., eds. (Academic Press, New York), p. 21.Google Scholar
Payne, G.L. et al. 1978 J. Appl. Phys. 49, 4688Google Scholar
Roudskoy, I.V. 1992 Doctor Thesis, Phys. Soc, Moscow.Google Scholar
Sil'nov, S.M. 1973 Doctor Thesis, MIPI, Moscow.Google Scholar
Suslov, A.I. 1973 Doctor Thesis, MIPI, Moscow.Google Scholar
Tallents, G.J. 1980 Plasma Phys. 22, 709.CrossRefGoogle Scholar
Veinstein, L.A. et al. 1979 Exitation of Atoms and Broadening of Spectrum Lines. (Nauka, Moscow).Google Scholar
Volenko, V.V. et al. 1983 Kv. Elektronika (Quant. Electron.) 10, 1281.Google Scholar
Zakharenkov, Yu.A. et al. 1981 Preprint FIAN-126 (Moscow).Google Scholar
Zeldovich, Ya.B. & RAIZER, Yu.P. 1966 Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. (Nauka, Moscow).Google Scholar