Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T16:21:38.276Z Has data issue: false hasContentIssue false

Fusion reactions and matter–antimatter annihilation for space propulsion

Published online by Cambridge University Press:  28 November 2006

CLAUDE DEUTSCH
Affiliation:
LPGP (UMR–CNRS 8578), Université Paris XI, Orsay, France
NAEEM A. TAHIR
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany

Abstract

Magnetic confinement fusion (MCF) and inertial confinement fusion (ICF) are critically contrasted in the context of far-distant travels throughout solar system. Both are shown to potentially display superior capabilities for vessel maneuvering at high speed, which are unmatched by standard cryogenic propulsion (SCP). Costs constraints seem less demanding than for ground-based power plants. Main issue is the highly problematic takeoff from earth, in view of safety hazards concomitant to radioactive spills in case of emergency. So, it is recommended to assemble the given powered vessel at high earth altitude ∼ 700 km, above upper atmosphere. Fusion propulsion is also compared to fission powered one, which secures a factor of two improvement over SCP. As far a specific impulse (s) is considered, one expects 500–3000 from fission and as much as 104–105 from fusion through deuterium–tritium (D-T). Next, we turn attention to the most performing fusion reaction, i.e., proton–antiproton annihilation with specific impulse ∼ 103–106 and thrust–to–weight ratio ∼ 10−3–1. Production and costs are timely reviewed. The latter could drop by four orders of magnitude, which is possible with successful MCF or ICF. Appropriate vessel designs will be presented for fusion as well as for antimatter propulsion. In particular, ion compressed antimatter nuclear II (ICAN-II) project to Mars in 30 days with fusion catalyzed by 140 ng of antiprotons will be detailed (specific impulse ∼ 13500 s).

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Basov, N.G. & Krokhin, O.N. (1964). The conditions of plasma heating by the optical generator radiation. In Proceeding of the Third International Conference on Quantum Electronics, Vol. 2, p. 1373. Paris: Dunod.
Cassenti, B.N. (1991). High Specific Impulse Antimatter Rockets. AIAA 91, 2548.Google Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Deutsch, C., Maynard, G., Bimbot, R., Gardes, D., Dellanegra, S., Dumail, M., Kubica, B., Richard, A., Rivet, M.F., Servajean, A., Fleurier, C., Sanba, A., Hoffmann, D.H.H., Weyrich, K. & Wahl, H. (1989). Ion beam-plasma interaction—A standard model approach. Nucl. Instr. Meth. Phys. Res. A 278, 3843.CrossRefGoogle Scholar
Deutsch, C. (2003). Fast ignition schemes for inertial confinement fusion. Eur. Phys. J. Appl. Phys. 24, 95.CrossRefGoogle Scholar
Deutsch, D. (1986). Inertial confinement driven fusion by intense ion beams. Ann. Phys. (Paris) 11, 1.CrossRefGoogle Scholar
Dyson, F.J. (1968). Interstellar transport. Phys. Today 21, 41.CrossRefGoogle Scholar
Everett, C.J. & Ulam, S. (1950). Multiplicative systems. Proceed. Nat. Acad. Sci. 34, 403.CrossRefGoogle Scholar
Forward, R.L. (1985a). Antiproton annihilation propulsion. J. Propulsion 1, 370.Google Scholar
Forward, R.L. (1985b). Antimatter annihilation propulsion. Report AD-A160-734. Wright-Patterson AFB, OH: Air Force Rocket Propulsion Laboratory.
Frisbee, R.H. & Leifer, S.D. (1998). Evaluation of propulsion options for interstellar missions. AIAA 99, 3403.CrossRefGoogle Scholar
Gabrielse, G., Bowden, N.S., Oxley, P., Speck, A., Storry, C.H., Tan, J.N., Wessels, M., Grzonska, D., Oelert, S., Scheppers, G., Sefzick, T., Walz, J., Pittner, H., Hansch, T.W. & Hessels, E.A. . (2002). Driven production of cold antihydrogen and the first measured distribution of antihydrogen states (A trap collaboration). Phys. Rev. Lett. 89, 233401.CrossRefGoogle Scholar
Gaidos, G., Lewis, R.A. Meyer, K. Schmidt, T. & Smith, G.A. (1998a). AIMStar antimatter initiated microfusion for precursor interstellar missions. AIAA 98, 3404.Google Scholar
Gaidos, G., Lewis, R.A., Smith, G.A., Dundore, B. & Chakrabarti, S. (1998b). Antiproton-catalyzed microfission/fusion propulsion systems for exploration of the outer solar system and beyond. AIAA 98, 3589.Google Scholar
Ganswindt, H. (1899). Das jüngste Gerich. Berlin: Library of Congress Catalogue No. TL 544, G3.
Hahn, O. & Strassmann, F. (1939). Concerning the existence of alkaline earth metals resulting from neutron irradiation of uranium. Naturwissenschafften 27, 11.Google Scholar
Hangst, J.S., Amoretti, M., Amsler, C., Bonomi, G., Bouchta, A., Bowe, P., Carraro, C., Cesar, C.L., Charlton, M., Collier, M.J.T., Doser, M., Filipini, V., Fine, K.S., Fontana, A., Fujiwara, M.C., Funakoshi, R., Genova, P., Hayano, R.S., Holzscheiter, M.H., Jorgensen, L.V., Lagomarsino, V., Landua, R., Lindelof, D., Rizzini, E.L., Macri, M., Madsen, N., Manuzio, G., Marchesotti, M., Montagna, P., Pruys, H., Regenfus, C., Riedler, P., Rochet, J., Rotondi, A., Rouleau, G., Testera, G., Variola, A., Watson, T.L. & van der Werf, D.P. (2002). Production and detection of cold antihydrogen atoms (Athena collaboration). Nature 419, 456.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Hora, H. & Loeb, H.W. (1986). Efficient production of antihydrogen by laser for space propulsion. Zeits. Flugwissenschaft u. Weltraumforschung 10, 393400.Google Scholar
Howe, S.D. & Jackson, G.P. (2004). Antimatter driven sail for deep space exploration. www.hbartech.com.
Howe, S.D. & Metzger, J.D. (1989). Antiproton-Based Propulsion Concepts and the Potential Impacts on a Manned Mars Mission. J. Propulsion and Power 5, 3.Google Scholar
Kilkenny, J.D., Alexander, N.B., Nikroo, A., Steinman, D.A., Nobile, A., Bernat, T., Cook, R., Letts, S., Takagi, M. & Harding, D. (2005). Laser targets compensate for limitations in inertial confinement fusion drivers. Laser Part. Beams 23, 475482.Google Scholar
Koresheva, E.R., Osipov, E. & Aleksandrova, I.V. (2005). Free standing target technologies for inertial fusion energy: Target fabrication, characterization, and delivery. Laser Part. Beams 23, 563571.CrossRefGoogle Scholar
Leon, P.T., Eliezer, S., Piera, M. & Marinez-Val, J.M. (2006). Inertial fusion features in degenerate plasmas. Laser Part. Beams 23, 193198.Google Scholar
Li, X.Z., Liu, B., Chen, S., Wei, Q.M. & Hora, H. (2004). Fusion cross-sections for inertial fusion energy. Laser Part. Beams 22, 469477.CrossRefGoogle Scholar
Nuckolls, J., Thiessen, A., Wood, L. & Zimmermann, G. (1972). Laser compression of matter to super high densities. Nature 239, 139.Google Scholar
Perlado, J.M., Sanz, J., Velarde, M., Reyes, S., Caturla, M.J., Arevalo, C., Cabellos, O., Dominguez, E., Marian, J., Martinez, E., Mota, F., Rodriguez, A., Salvador, M. & Velarde, G. (2005). Activation and damage of fusion materials and tritium effects in inertial fusion reactors: Strategy for adequate irradiation. Laser Part. Beams 23, 345349.Google Scholar
Roth, J.R. (1989). Space applications of fusion energy. Fusion Techn. 15, 1375.CrossRefGoogle Scholar
Schmidt, G.R., Gerrish, H.P., Martin, J.J. Smith, G.A., &Meyer, K.J. (1999). Antimatter production for near-term propulsion applications. www.daviddarling.info/encyclopedia/A/antimatterprop.htmlCrossRef
Smith, G.A., Gaidos, G., Lewis, R.A. & Schmidt, T. (1999). Aimstar: Antimatter initiated microfusion for precursor interstellar missions. Acta Astronautica 44, 183.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and High Gain with Ultrapowerful. Lasers Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Teller, E., Glass, A.J., Fowler, T.K., Hasegawa, A & Santarius, J.F. (1992). Space propulsion by fusion in a magnetic dipole. Fusion Techn. 22, 82.CrossRefGoogle Scholar
Winterberg, F. (1964). On attainability of fusion temperatures under high densities by impact shock waves of small solid particles. Zeits. Naturforch. 19a, 231.Google Scholar
Winterberg, F. (1968). Possibility of producing a dense thermonuclear plasma by an intense field emission. Phys. Rev. 174, 212.CrossRefGoogle Scholar
Winterberg, F. (1977). Rocket propulsion by staged thermonuclear explosions. JBIS 30, 333.Google Scholar
Winterberg, F. (2006). Laser amplification by electric pulse power. Laser Part. Beams 24, 525533.CrossRefGoogle Scholar