Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T01:27:30.390Z Has data issue: false hasContentIssue false

Fusion by hypervelocity impact

Published online by Cambridge University Press:  09 March 2009

A. E. Pozwolski
Affiliation:
Education Nationale, 4 & 6 rue de la Plaine, 75020 Paris, France

Abstract

The conversion of kinetic energy into heat is a possible approach to get the very high temperatures needed for controlled fusion. Various techniques leading to hypervelocities are considered. Some particular geometries and constitutions of liners allowing velocity amplification and superheating are described.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, D. E. T. F. 1975 Jour. Brit. Nucl. Energy Soc. 14, 311.Google Scholar
Ashkin, A. 1970 Phys. Rev. Lett. 24, 156.CrossRefGoogle Scholar
Ashkin, A. 1973 Private Communication.Google Scholar
Birkhoff, G., MacDougall, D. P., Pugh, E. M. & Taylor, G. 1948 Jour, of Appl. Phys. 19, 563.CrossRefGoogle Scholar
Burkalter, P., Davis, J., Rauch, J., Clark, W., Dahlbacka, G. & Schneider, R. 1979 Jour, of Appl. Phys. 50, 705.CrossRefGoogle Scholar
Cook, M. A. 1968 Reinhold, p. 420.Google Scholar
Derentowicz, H., Kaliski, S. & Ziolkowski, Z. 1977 J. Tech. Phys. 18, 465.Google Scholar
Deutsch, C. 1982 Physica Scripta, T2/1, 192.CrossRefGoogle Scholar
Friichtenicht, J. F. & Becker, D. G., 1971 Astrophys. Jour. 166, 717.CrossRefGoogle Scholar
Fermi, E. 1949 Phys. Rev. 75, 1169.CrossRefGoogle Scholar
Gazaix, M., Doucet, H. J., Etlicher, B., Lamain, J. & Rouillé, C. 1984 Intern. Conf. on Plasma Phys., Lausanne, June 21-July 3, p. 395.Google Scholar
Goddard, R. H. 1920 Methods and Means for Producing Electrified Jets of Gas, U.S. Patent 1363 037; December 21.Google Scholar
Hawke, R. S. 1981 Atomkernenergie-Kerntech. Bd. 38, 35.Google Scholar
Hora, H. 1983 Atomkernenergie Kerntech. 42, 7.Google Scholar
Linhart, J. G. 1968 Supplemento al Nuovo Cim. 6, 913.Google Scholar
Linhart, J. G. 1971 Proc. Intern. School E. Fermi, p. 151. New York Acad. Press.Google Scholar
Linhart, J. G. 1984 Particle Beams, 2, 87.CrossRefGoogle Scholar
Maisonnier, C. 1966 Nuovo Cim. 42b, 332.CrossRefGoogle Scholar
Pozwolski, A. E. 1970 Patent N° 2 081 241. March 23.Google Scholar
Pozwolski, A. E. 1973 Fusion; Phys. Lett. A, 44A, 196.CrossRefGoogle Scholar
Pozwolski, A. E. 1979 Ind. Jour, of Pure & Appl. Phys. 11, 760.Google Scholar
Pozwolski, A. E. 1981 C. R. Acad. Sc. Paris, 292, 123 (Sériell).Google Scholar
Pozwolski, A. E. 1982 Intern. Conf. on Plasma Phys., Göteborg, June 9–15.Google Scholar
Pozwolski, A. E. 1984a IEEE Trans, on Plasma Sc. PS12, 21.CrossRefGoogle Scholar
Pozwolski, A. E. 1984b Intern. Conf. on Plasma Phys., Lausanne, June 27-July 3, p. 254.Google Scholar
Rashleig, S. C. & Marshall, R. A. 1978 Jour. Appl. Phys. 49, 2540.CrossRefGoogle Scholar
Rocard, Y. 1952 Masson, Paris, p. 426.Google Scholar
Shelton, H., Hendricks, C. D. & Wuerker, R. F. 1960 Jour. Appl. Phys. 31, 1243.CrossRefGoogle Scholar
Shyam, A. & Srinivasan, M. 1984 Atomkernenergie-Kerntech. 44, 196.Google Scholar
Spitzer, L. 1956 Phys. of Fully Ionized Gases, Intersc. Pub. New York Chap. V.Google Scholar
Teller, E. 1954 Rept. Progr. Phys. 17, 154.CrossRefGoogle Scholar
Walsh, J. M., Shreffer, R. G. & Willig, F. J. 1953 Jour. Appl. Phys. 24, 439.CrossRefGoogle Scholar
Winterberg, F. 1964 On Z. Naturforsch. 19a, 231.CrossRefGoogle Scholar
Winterberg, F. 1968 Plasma Phys. 10, 55.CrossRefGoogle Scholar
Winterberg, F. 1981 Atomkernenergie-Kerntech. 38, 81.Google Scholar