Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T03:13:43.563Z Has data issue: false hasContentIssue false

Frequency-dependent opacity calculations for high-Z plasma including l splitting

Published online by Cambridge University Press:  09 March 2009

A. Rickert
Affiliation:
Max-Planck-Institut für Quantenoptik, D-8046 Garching, Germany
J. Meyer-Ter-Vehn
Affiliation:
Max-Planck-Institut für Quantenoptik, D-8046 Garching, Germany

Abstract

Frequency-dependent opacities are determined for high-Z plasma taking into account splitting of the energy levels with orbital quantum number l. The energy levels are calculated with the help of the screened hydrogenic model generalized by Perrot for l splitting. Oscillator strengths for bound-bound and bound-free transitions are computed from hydrogenic wave functions with two different screened nuclear charges. The average atom model is used to determine the plasma state, with provision for continuum lowering and pressure ionization. Explicit results for extinction coefficients of gold plasma with ρ = 0.1 g/cm3 and T = 100−500 eV are compared with calculations neglecting l splitting. Considerably enhanced absorption at lower photon energies (50–300 eV) is obtained when taking l splitting into account. Planck and Rosseland mean opacities are also calculated and compared with data contained in the SESAME opacity library. Remarkable agreement is found without any artificial line broadening or band smearing.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, B. H. et al. . 1966 Opacity of High Temperature Air, in Progress in High Temperature Physics and Chemistry, Rouse, C. A., ed. (Pergamon, Oxford), Vol. 1.Google Scholar
Bates, D. R. & Damgaard, A. 1949 Phil. Trans. R. Soc. London A 242, 101.Google Scholar
Bebb, H. B. 1966 J. Math. Phys. 7, 955.CrossRefGoogle Scholar
Carlson, T. R. & Hollingsworth, H. M. 1968 Mon. Not. R. Astron. Soc. 141, 77.CrossRefGoogle Scholar
Celliers, P. & Eidmann, K. 1990 Phys. Rev. A 41, 327.CrossRefGoogle Scholar
Clayton, D. D. 1968 Principles of Stellar Evolution and Nucleosynthesis (McGraw-Hill, New York).Google Scholar
Cox, P. J. & Giuli, R. T. 1968 Principles of Stellar Structure (Gordon and Breach, New York), Vol. 1.Google Scholar
Eidmann, K. 1989 Emission and Absorption of Radiation in Laser-Produced Plasmas, in Course and Workshop of the International School of Plasma Physics Piero Caldirola “Inertial Confinement Fusion” (Varenna 1988), Caruso, A. and Sindoni, E., eds. (Editrice Compositori, Bologna).Google Scholar
Huebner, W. F. 1986 Atomic and Radiative Processes in the Solar Interior, in Physics of the Sun, Sturrock, P. A., ed. (Reidel, Dordrecht), Vol. 1.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1965 Quantum Mechanics, Mathematical Appendices (Pergamon, Oxford).Google Scholar
Mancini, R. C. & Fontan, C. F. 1985 J. Quant. Spectrosc. Radial. Transfer 34, 115.CrossRefGoogle Scholar
Mayer, H. 1947 Los Alamos Scientific Laboratory Report No. LA-647.Google Scholar
Menzel, D. H. & Pekeris, C. H. 1935 Mon. Not. R. Astron. Soc. 96, 77.Google Scholar
More, R. M. 1981 Lawrence Livermore Laboratory Report No. UCRL-84991, Parts I and II.Google Scholar
More, R. M. 1982 J. Quant. Spectrosc. Radiat. Transfer 27, 345.CrossRefGoogle Scholar
Naqvi, A. M. 1964 J. Quant. Spectrosc. Radiat. Transfer 4, 597.CrossRefGoogle Scholar
Perrot, F. 1989 Phys. Scr. 39, 332.CrossRefGoogle Scholar
Pomraning, G. C. 1973 The Equations of Radiation Hydrodynamics (Pergamon, Oxford).Google Scholar
Rickert, A. 1989 Diploma Thesis, Technical University, Munich (unpublished); and Max-Planck-Institut f¨r Quantenoptik Report No. MPQ-148.Google Scholar
Sigel, R. et al. . 1990 Phys. Rev. Lett. 65, 587.CrossRefGoogle Scholar
Sobelman, I. I. 1979 Atomic Spectra and Radiative Transitions (Springer-Verlag, Berlin).CrossRefGoogle Scholar
T-4 Group 1983 Los Alamos National Laboratory Report No. LALP-83–4.Google Scholar
Tsakiris, G. D. & Eidmann, K. 1987 J. Quant. Spectrosc. Radiat. Transfer 38, 353.CrossRefGoogle Scholar
Varsavsky, C. M. 1963 Planet. Space Sci. 11, 1001.CrossRefGoogle Scholar
Wiese, W. L., Smith, M. W. & Glennon, B. M. 1966 Atomic Transition Probabilities-Hydrogen through Neon. NSRDS-National Bureau of Standards 4, Vol. I (U.S. Government Printing Office, Washington, D.C.).Google Scholar
Yabe, T. & Goel, B. 1986 Kernforschungszentrum Karlsruhe Report No. KfK-4176.Google Scholar
Zel'Dovich, Ya. B. & Raizer, Yu. P. 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, San Diego).Google Scholar
Zimmerman, G. P. & More, R. M. 1980 J. Quant. Spectrosc. Radiat. Transfer 23, 517.CrossRefGoogle Scholar