Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T15:08:30.009Z Has data issue: false hasContentIssue false

Free standing target technologies for inertial fusion energy: Target fabrication, characterization, and delivery

Published online by Cambridge University Press:  05 December 2005

E.R. KORESHEVA
Affiliation:
P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
I.E. OSIPOV
Affiliation:
P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
I.V. ALEKSANDROVA
Affiliation:
P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia

Abstract

Inertial fusion energy (IFE) research indicates that the energy generation by means of cryogenic fuel target compression requires that targets must be injected to the target chamber center at a rate of about 6 Hz. This requirement can be fulfilled only if the targets are free-standing. The most interesting results concerning the activity of the Lebedev Physical Institute in the area of free-standing targets (FST) fabrication, characterization and delivery are presented.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleksandrova, I.V. & Belolipetskiy, A.A. (1999a). Mathematical models for filling polymer shells with a real gas fuel. Laser Part. Beams 17, 701.Google Scholar
Aleksandrova, I.V. & Belolipetskiy, A.A. (1999b). An efficient method for filling targets with a highly-pressurized gas fuel. J. Moscow Phys. Soc. 9, 325.Google Scholar
Aleksandrova, I.V., Bazdenkov, S.V. & Chtcherbakov, V.I. (2002). Rapid fuel layering inside moving free-standing ICF targets: Physical model and simulation code development. Laser Part. Beams 20, 13.Google Scholar
Aleksandrova, I.V., Bazdenkov, S.V., Chtcherbakov, V.I., Koresheva, E.R. & Osipov, I.E. (2001). Extension of free-standing target technologies on IFE requirements. In Inertial Fusion Science and Application (Tanaka, K.A. et al., Eds.), p. 762. New York: Elsevier.
Aleksandrova, I.V., Bazdenkov, S.V., Chtcherbakov, V.I., Koresheva, E.R., Koshelev, E.L., Osipov, I.E. & Yaguzinskiy, L.V. (2003). An efficient method of fuel ice formation in moving free standing ICF/IFE targets. J. Appl. Phys. D 37, 1163.Google Scholar
Aleksandrova, I.V., Belolipetskiy, A.A., Golov, V.I., Chtcherbakov, V.I., Makeyeva, E.V., Koresheva, E.R. & Osipov, I.E. (2000a). Progress in the development of tomographic information processing methods for applications to ICF target characterization. Fusion Technol. 38, 190.Google Scholar
Aleksandrova, I.V., Koresheva, E.R. & Osipov, I.E. (1999a). Free-standing targets for applications to ICF. Laser Part. Beams 17, 713.Google Scholar
Aleksandrova, I.V., Koresheva, E.R. & Osipov, I.E. (1996). Injection as a principle of the target transport among the basic units: fill system—layering module—target chamber. Proc. 11th Target Fabrication Specialists' Meeting (Ocras Island, Washington, September 8–12, 1996).
Aleksandrova, I.V., Koresheva, E.R., Osipov, I.E., Golov, V.I. & Chtcherbakov, V.I. (1999b). Microtomography data processing methods for cryogenic target characterization. Laser Part. Beams 17, 729.Google Scholar
Aleksandrova, I.V., Koresheva, E.R., Osipov, I.E., Tolokonnikov, S.M., Belolipetskiy, A.A., Rivkis, L.A., Baranov, G.D., Listratov, V.I., Soloviev, V.G., Timofeev, I.D., Usachev, G.S., Veselov, V.P. & Yaguzhinskiy, L.S. (2000b). Free-standing target system for ICF. Fusion Technol. 38, 166.Google Scholar
Borisenko, N.G., Akunets, A.A., Bushuev, V.S., Dorogotovtsev, V.M. & Merkuliev, Y.A. (2003). Motivation and fabrication methods for inertial confinement fusion and inertial fusion energy targets. Laser Part. Beams 21, 505509.Google Scholar
Callahan, D.A., Herrmann, M.C. & Tabak, M. (2002). Progress in heavy ion target capsule and hohlraurn design. Laser Part. Beams 20, 405410.Google Scholar
Chtcherbakov, V.I., Bazdenkov S.V., &Aleksandrova, I.V. (2002). Integrated FST-layering code for the optimization of fuel ice formation in moving ICF/IFE capsules. Proc. XXVII European Conference on Laser Interaction with Matter (Moscow, Russia, October 7–11, 2002).
Chtcherbakov, V.I., Bazdenkov, S.V. & Aleksandrova, I.V. (2003). Progress in the development of an integrated FST-layering code for the optimization of fuel ice formation in moving ICF/IFE capsules. Proc. 3rd International Conference on the Inertial Fusion Science and Applications (Monterey, California, September 7–12, 2003).
Chtcherbakov, V.I., Bazdenkov, S.V. & Aleksandrova, I.V. (2004). Uniform freezing of liquid fuel in moving free-standing ICF/IFE capsules due to their stochastic rotation. Proc. XXVIII European Conference on Laser Interaction with Matter (Roma, Italy, September 6–10, 2004).
Deutsch, C. (2003). Transport of megaelectron volt protons for fast ignition. Laser Part. Beams 21, 3335.Google Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., Mintsev, V., Tahir, N.A., Varentsov, D. & Wieser, J. (2002). Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9, 36513654.Google Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy-loss of heavy-ions in a plasma target. Phys. Rev. A 42, 23132321.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Koresheva, E.R., Aleksandrova, I.V., Baranov, G.D., Belolipetskiy, A.A., Veselov, V.P., Listratov, V.I., Osipov, I.E., Rivkis, L.A., Soloviev, V.G., Timofeev, I.D., Tolokonnikov, S.M., Usachev, G.S. & Yaguzinskiy, L.S. (2000). Current Results in the Area of Cryogenic Fuel Layering Obtained at Realization of the ISTC Project #512. In: Inertial Fusion Science and Applications 2999, p. 897. New York: Elsevier.
Koresheva, E.R., Aleksandrova, I.V., Osipov, I.E., Bazdenkov, S.V., Chtcherbakov, V.I., Koshelev, E.L., Nikitenko, A.I., Tolokonnikov, S.M., Yaguzinskiy, L.S., Baranov, G.D., Safronov, A.I., Timofeev, I.D., Kuteev, B.V. & Kapralov, V.G. (2003a). Progress in the extension of free-standing target technologies on IFE requirements. Fusion Sci. Technol. 35, 290.Google Scholar
Koresheva, E.R. (2003b). Status of the Lebedev Physical Institute in ICF and IFE programs. Lecture, Institute for Laser Engineering, Osaka: Osaka University Press.
Koresheva, E.R. (2004). FST technologies for IFE targets fabrication, characterization and delivery. Institute for Laser Engineering, Annual Progress Report. Osaka: Osaka Univeristy Press.
Koresheva, E.R., Osipov, I.E., Aleksandrova, I.V., Bazdenkov, S.V., Chtcherbakov, V.I., Nikitenko, A.I., Tolokonnikov, S.M., Yaguzinskiy, L.S., Baranov, G.D., Safronov, A.I., Timofeev, I.D., Kapralov, V.G. & Kuteev, B.V. (2003). Progress in the extension of free-standing target technologies on IFE requirements. Fusion Sci. Technol. 35, 10.Google Scholar
Koresheva, E.R., Osipov, I.E., Timasheva, T.P. & Yaguzinskiy, L.S. (2002). A new method of fabrication of the transparent solid hydrogen layer inside a microshell: The application to inertial confinement fusion. J. Phys. D: Appl. Phys. 35, 825.Google Scholar
Koshkarev, D.G. (2002). Heavy ion driver for fast ignition. Laser Part. Beams 20, 595597.Google Scholar
Malka, V. (2002). Charged particle source produced by laser-plasma interaction in the relativistic regime. Laser Part. Beams 20, 217221.Google Scholar
Monsler, M.J., Merkul'ev, Y.A. & Norimatsu, T. (1995). Target fabrication and injection. In Energy From Inertial Fusion. Vienna: IAEA.
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospective. Laser Part. Beams 22, 512.Google Scholar
Nakai, S. & Miley, G.N. (1992). Physics Of High Power Laser And Matter Interactions. Singapore: Word Scientific Publishing.
Nikitenko, A.I. & Tolokonnikov, S.M. (2002). Characterization of hydrogen ice surface quality in ICF targets using backlit shadowgraphy. Proc. XXVII European Conference on Laser Interaction with Matter (Moscow, Russia, October 7–11, 2002).
Osipov, I.E., Aleksandrova, I.V., Baranov, G.D., Jitov, N.B., Koresheva, E.R., Koshelev, E.L., Kupriyashin, A.I., Leonov, V.N., Listratov, V.I., Nikitenko, A.I., Tolokonnikov, S.M. & Timofeev, I.D. (2002b). Upgrade of the Free-Standing Target System: Creation of Tomograph Facility for Target Characterization. Proc. XXVII European Conference on Laser Interaction with Matter (Moscow, Russia, October 7–11, 2002).
Osipov, I.E., Koresheva, E.R. & Baranov, G.D. (1999). A ramp filling procedure applied to filling polymer and glass shells with highly pressurized hydrogen. J. Moscow Phys. Soc. 9, 301.Google Scholar
Osipov, I.E., Koresheva, E.R., Baranov, G.D., Timofeev, I.D., Kapralov, V.G. & Kuteev, B.V. (2002a). A device for cryotarget rep-rate delivery in IFE target chamber. In Inertial Fusion Science and Application, p. 810. Paris: Elsevier.
Osipov, I.E., Koresheva, E.R., Tolokonnikov, S.M., Kuteev, B.V., Petrovskiy, V.V., Rezgol, I.A. & Baranov, G.D. (2004). Protective savot for cryogenic target delivery to the laser focus. Thermonuclear Fus. 2, 11.Google Scholar
Tahir, N.A., Udrea, S., Deutsch, C., Fortov, V.E., Grandjouan, N., Gryaznov, V., Hoffmann, D.H.H., Hulsmann, P., Kirk, M, Lomonosov, I.V., Piriz, A.R., Shutov, A., Spiller, P., Temporal, M. & Varentsov, D. (2004). Target heating in high-energy-density matter experiments at the proposed GSI FAIR facility: Non-linear bunch rotation in SIS100 and optimization of spot size and pulse length. Laser Part. Beams 22, 485.Google Scholar