No CrossRef data available.
Published online by Cambridge University Press: 02 November 2016
We use an Eulerian Vlasov code, which solves the one-dimensional relativistic Vlasov–Maxwell equations for both electrons and ions, to follow in details the evolution of the distribution functions and the mechanism of the formation and evolution of double layers during ion acceleration driven by a high-intensity circularly polarized short laser pulse (12 ω−1 where ω is the laser angular frequency) normally incident on a thin dense foil. We compare three cases with a high-density deuterium plasma target of total thickness 1.767 cω−1 and constant n/n cr = 100, where n cr is the critical density, and where the laser intensity is varied from a situation where the target is opaque to the laser pulse (normalized vector potential or quiver momentum a 0 = 80), to a situation where, above a critical laser intensity, a very small fraction of the laser pulse is transmitted through the target (a 0 = 90), and finally to a situation where a more important fraction is transmitted through the target (a 0 = 100). The dynamics of ion and electron acceleration are quite different in the three cases, and are followed in detail by the Eulerian Vlasov code, which allows an accurate representation of the distribution function. In the intermediate case, the Vlasov code has revealed a remarkably well-developed spiral structure in the phase space of the electron distribution function, which is associated with large sawtooth modulations in the electron density profiles.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.