Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T00:01:27.080Z Has data issue: false hasContentIssue false

Fokker–Planck modeling of electron transport in laser-produced plasmas

Published online by Cambridge University Press:  09 March 2009

E.M. Epperlein
Affiliation:
Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY 14623–1299

Abstract

Fokker-Planck (FP) codes have become useful tools for modeling nonlocal heat-transport phenomena in laser-produced plasmas. Several possible simplifications to the FP equation as well as different numerical techniques available for its solution are investigated. The most robust and efficient approach is found to involve the diffusive approximation of the FP equation and the alternating-direction-implicit method of solution. The SPARK FP code, which has been developed along these principles, is described in detail. It incorporates fluid ions and solves for transport on either a two-dimensional Eulerian grid or a one-dimensional Lagrangian grid. Sample simulation results are presented, together with a discussion of possible improvements to the code.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albritton, J.R. 1983 Phys. Rev. Lett. 50, 2078.CrossRefGoogle Scholar
Albritton, J.R. et al. 1986 Phys. Rev. Lett. 57, 1887.CrossRefGoogle Scholar
Bell, A.R. et al. 1981 Phys. Rev. Lett. 46, 243.CrossRefGoogle Scholar
Bell, A.R. 1983 Phys. Fluids 26, 279.CrossRefGoogle Scholar
Bell, A.R. 1985 Phys. Fluids 28, 2007.CrossRefGoogle Scholar
Braginskii, S.I. 1965 Reviews of Plasma Physics (Consultants Bureau, New York), p. 205.Google Scholar
Briley, W.R. & McDonald, H. 1980 J. Comput. Phys. 34, 54.CrossRefGoogle Scholar
Chang, J.S. & Cooper, G. 1970 J. Comput. Phys. 6, 1.CrossRefGoogle Scholar
Cheng, C.Z. & Knorr, G. 1976 J. Comput. Phys. 22, 330.CrossRefGoogle Scholar
Delettrez, J. 1986 Can. J. Phys. 64, 932.CrossRefGoogle Scholar
Douglas, J. Jr 1962 Numer. Math. 4, 41.CrossRefGoogle Scholar
Douglas, J. Jr, & Gunn, J.E. 1964 Numer. Math. 6, 428.CrossRefGoogle Scholar
Epperlein, E.M. & Haines, M.G. 1986 Phys. Fluids 29, 1029.CrossRefGoogle Scholar
Epperlein, E.M. et al. 1988a Phys. Rev. Lett. 61, 2453.CrossRefGoogle Scholar
Epperlein, E.M. et al. 1988b Comput. Phys. Commun. 52, 7.CrossRefGoogle Scholar
Epperlein, E.M. 1990 Phys. Rev. Lett. 65, 2145.CrossRefGoogle Scholar
Epperlein, E.M. 1991a Phys. Fluids 3, 3082.CrossRefGoogle Scholar
Epperlein, E.M. 1991b in Research Trends in Physics: Nonlinear and Relativistic Effects in Plasmas, Stefan, V., ed. (American Institute of Physics, New York), p. 43.Google Scholar
Epperlein, E.M. & Short, R.W. 1991 Phys. Fluids B 3, 3092.CrossRefGoogle Scholar
Epperlein, E.M. & Short, R.W. 1992a Phys. Fluids B 4, 2211.CrossRefGoogle Scholar
Epperlein, E.M. & Short, R.W. 1992b Phys. Fluids B 4, 4190.CrossRefGoogle Scholar
Epperlein, E.M. et al. 1992 LLE-LLNL Progress Report on Studies in Nonlocal Heat Transport in Spherical Plasmas Using the Fokker-Planck Code SPARK (Laboratory for Laser Energetics Report No. 232).Google Scholar
Epperlein, E.M.05, 1994Implicit and Conservative Difference Scheme for the Fokker-Planck Equation,” J. Comput. Phys. 112.CrossRefGoogle Scholar
Fleck, J.A. JR., 1974 J. Comput. Phys. 16, 324.CrossRefGoogle Scholar
Glendenning, S.G. et al. 1992 Phys. Rev. Lett. 69, 1201.CrossRefGoogle Scholar
Johnston, T.W. 1966 J. Math. Phys. 7, 1453.CrossRefGoogle Scholar
Johnston, T.W. & Dawson, J.M. 1973 Phys. Fluids 16, 722.CrossRefGoogle Scholar
Jorna, S. & Wood, L. 1987 J. Plasma Phys. 38, part 2, 317.CrossRefGoogle Scholar
Khan, S.A. & Rognlien, T.D. 1981 Phys. Fluids 24, 1442.CrossRefGoogle Scholar
Kho, T.H. & Bond, D.J. 1981 J. Phys. D: Appl. Phys. 14, L117.CrossRefGoogle Scholar
Kho, T.H. et al. 1983 Phys. Rev. A 28, 3156.CrossRefGoogle Scholar
Kho, T.H. 1985 Phys. Rev. A 32, 666.CrossRefGoogle Scholar
Kho, T.H. & Haines, M.G. 1985 Phys. Rev. Lett. 55, 825.CrossRefGoogle Scholar
Kho, T.H. & Haines, M.G. 1986 Phys. Fluids 29, 2665.CrossRefGoogle Scholar
Kieffer, J.C. et al. 1992 Phys. Rev. Lett. 68, 480.CrossRefGoogle Scholar
Langdon, A.B. 1980 Phys. Rev. Lett. 44, 575.CrossRefGoogle Scholar
Langdon, A.B. 1981 In CECAM Report of Workshop on The Flux Limiter and Heat Flow Instabilities in Laser-Fusion Plasmas (Universite Paris Sud, France), p. 69.Google Scholar
Luciani, J.F. et al. 1983 Phys. Rev. Lett. 51, 1664.CrossRefGoogle Scholar
Malone, R.C. et al. 1975 Phys. Rev. Lett. 34, 721.CrossRefGoogle Scholar
Marchand, R. & Matte, J.P. 1991 J. Comput. Phys. 97, 352.CrossRefGoogle Scholar
Mason, R.J. 1981 J. Comput. Phys. 41, 233.CrossRefGoogle Scholar
Matte, J.P. & Virmont, J. 1982 Phys. Rev. Lett. 49, 1936.CrossRefGoogle Scholar
Matte, J.P. et al. 1984 Phys. Rev. Lett. 53, 1461.CrossRefGoogle Scholar
Matte, J.P. 1987 Ph.D. thesis, École Polytechnique, France.Google Scholar
Mora, P. 1993Nonlocal electron transport in laser created plasmas,” ECLIM, 05 10–14, 1993, Paris [to appear in special issue of Laser and Particle Beams 12(3)].Google Scholar
Nishiguchi, A. et al. 1992 Phys. Fluids B 4, 417.CrossRefGoogle Scholar
Pert, G.J. 1983 J. Comput. Phys. 49, 1.CrossRefGoogle Scholar
Richtmyer, R.D. & Morton, K.W. 1967 Difference Methods of Initial-Value Problems (Wiley, New York), p. 313.Google Scholar
Rickard, G.J. et al. 1989 Phys. Rev. Lett. 62, 2687.CrossRefGoogle Scholar
Rogers, J.H. et al. 1989 Phys. Fluids B 1, 741.CrossRefGoogle Scholar
Rose, H.A. & DuBois, D.F. 1992a Phys. Fluids B 4, 1394.CrossRefGoogle Scholar
Rose, H.A. & DuBois, D.F. 1992b Phys. Fluids B 4, 252.CrossRefGoogle Scholar
Rosenbluth, M.N. et al. 1957 Phys. Rev. 107, 1.CrossRefGoogle Scholar
Sanmartin, J.R. et al. 1992 Phys. Fluids B 4, 3579.CrossRefGoogle Scholar
Shirazian, M.H. & Steinhauer, L.C. 1981 Phys. Fluids 24, 843.CrossRefGoogle Scholar
Shkarofsky, I.P. 1963 Can. J. Phys. 41, 1753.CrossRefGoogle Scholar
Short, R.W. & Epperlein, E.M. 1992 Phys. Rev. Lett. 68, 3307.CrossRefGoogle Scholar
Shvarts, D. et al. 1981 In CECAM Report of Workshop on The Flux Limiter and Heat Flow Instabilities in Laser-Fusion Plasmas (Universite Paris Sud, France), p. 47.Google Scholar
Spitzer, L. Jr & Härm, R. 1953 Phys. Rev. 89, 977.CrossRefGoogle Scholar
Town, R.P.J. & Bell, A.R. 1991 In CECAM Report of Workshop on Laser-Plasmas Interactions (Universite Paris Sud, France), p. 36.Google Scholar
Wright, R.J. 1981 J. Phys. D: Appl. Phys. 14, 805.CrossRefGoogle Scholar
Young, P.E. 1991 Phys. Fluids B 3, 2331.CrossRefGoogle Scholar
Young, P.E. et al. 1990 Phys. Rev. Lett. 61, 2336CrossRefGoogle Scholar