Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T16:50:54.708Z Has data issue: false hasContentIssue false

Focusing of intense laser pulse by a hollow cone

Published online by Cambridge University Press:  12 April 2010

Wei Yu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Shanghai, China Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China
Lihua Cao*
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, China Center for Applied Physics and Technology, Peking University, Beijing, China
M.Y. Yu
Affiliation:
Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China Institute for Theoretical Physics I, Ruhr University, Bochum, Germany
A.L. Lei
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Shanghai, China
Z.M. Sheng
Affiliation:
Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China Department of Physics, Jiaotong University, Shanghai, China
H.B. Cai
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, China Institute of Laser Engineering, Osaka University, Osaka, Japan Center for Applied Physics and Technology, Peking University, Beijing, China
K. Mima
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
X.T. He
Affiliation:
Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China Institute of Applied Physics and Computational Mathematics, Beijing, China Center for Applied Physics and Technology, Peking University, Beijing, China
*
Address correspondence and reprint requests to: Lihua Cao, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China. E-mail: [email protected]

Abstract

It is shown that an intense laser pulse can be focused by a conical channel. This anomalous light focusing can be attributed to a hitherto ignored effect in nonlinear optics, namely that the boundary response depends on the light intensity: the inner cone surface is ionized and the laser pulse is in turn modified by the resulting boundary plasma. The interaction creates a new self-consistently evolving light-plasma boundary, which greatly reduces reflection and enhances forward propagation of the light pulse. The hollow cone can thus be used for attaining extremely high light intensities for applications in strong-field and high energy-density physics and other areas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asthana, M.V., Giulietti, A., Giulietti, D., Gizzi, L.A. & Sodha, M.S. (2000). Relativistic interaction of rippled laser beams with plasmas. Laser Part. Beams 18, 399.CrossRefGoogle Scholar
Beg, F.N., Bell, A.R., Dangor, A.E., Danson, C.N., Fews, A.P., Glinsky, M.E., Hammel, B.A., Lee, P., Norreys, P.A. & Tatarakis, M. (1997). A study of picosecond laser–solid interactions up to 1019 W/cm2. Phys. Plasmas 4, 447.CrossRefGoogle Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interactions, Laser Part. Beams 25, 161.CrossRefGoogle Scholar
Cao, L., Yu, W., Yu, M.Y., Xu, H., He, X.T., Gu, Y., Liu, Z., Li, J. & Zheng, C. (2008). Nonlinear laser focusing using a conical guide and generation of energetic ions. Phys. Rev. E 78, 036405.CrossRefGoogle ScholarPubMed
Chen, Z.L., Kodama, R., Nakatsutsumi, M., Nakamura, H., Tampo, M., Tanaka, K.A., Toyama, Y., Tsutsumi, T. & Yabuuchi, T. (2005). Enhancement of energetic electrons and protons by cone guiding of laser light. Phys. Rev. E 71, 036403.CrossRefGoogle ScholarPubMed
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernández, J., Gauthier, J.-C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pépin, H. & Renard-Legalloudec, N. (2004). Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801.CrossRefGoogle ScholarPubMed
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229.CrossRefGoogle Scholar
Fritzler, S., Malka, V., Grillon, G., Rousseau, J.P., Burgy, F., Lefebvre, E., D'humièes, E., Mckenna, P. & Ledingham, K.W.D. (2003). Proton beams generated with high-intensity lasers: Applications to medical isotope production. Appl. Phys. Lett. 83, 30393041.CrossRefGoogle Scholar
Key, M.H. (2007). Status of and prospects for the fast ignition inertial fusion concept, Phys. Plasmas 14, 055502.CrossRefGoogle Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nat. (London) 412, 798802.CrossRefGoogle ScholarPubMed
Lei, A.L., Tanaka, K.A., Kodama, R., Kumar, G.R., Nagai, K., Norimatsu, T., Yabuuchi, T. & Mima, K. (2006). Optimum hot electron production with low-density foams for laser fusion by fast ignition. Phys. Rev. Lett. 96, 255006.CrossRefGoogle ScholarPubMed
Mason, R.J. (2006). Heating mechanisms in short-pulse laser-driven cone targets. Phys. Rev. Lett. 96, 035001.CrossRefGoogle ScholarPubMed
Mori, W.B. (1997). The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers. IEEE J. Quant. Electron. 33, 1942.CrossRefGoogle Scholar
Mourou, G.A., Barty, C.P.J. & Perry, M.D. (1998). Ultrahigh intensity lasers: physics of the extreme on a tabtop. Phys. Today 51, 22.CrossRefGoogle Scholar
Nagatomo, H., Johzaki, T., Nakamura, T., Sakagami, H., Sunahara, A. & Mima, K. (2007). Simulation and design study of cryogenic cone shell target for fast ignition realization experiment project. Phys. Plasmas 14, 056303.CrossRefGoogle Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2007). Optimization of cone target geometry for fast ignition. Phys. Plasmas 14, 103105.CrossRefGoogle Scholar
Park, H.-S., Maddox, B.R., Giraldez, E., Hatchett, S.P., Hudson, L.T., Izumi, N., Key, M.H., Pape, S.L., Mackinnon, A.J., Macphee, A.G., Patel, P.K., Phillips, T.W., Remington, B.A., Seely, J.F., Tommasini, R., Town, R., Workman, J. & Brambrink, E. (2008). High-resolution 17–75 keV back-lighters for high energy density experiments . Phys. Plasmas 15, 072705.CrossRefGoogle Scholar
Pasley, J. & Stephens, R. (2007). Simulations investigating the effect of a deuterium-tritium-ice coating on the motion of the gold cone surface in a re-entrant cone-guided fast ignition inertial confinement fusion capsule. Phys. Plasmas 14, 054501.CrossRefGoogle Scholar
Perry, M.D. & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Sci. 264, 917924.CrossRefGoogle ScholarPubMed
Perry, M.D., Pennington, D., Stuart, B.C., Tietbohl, G., Britten, J.A., Brown, C., Herman, S., Golick, B., Kartz, M., Miller, J., Powell, H.T., Vergino, M. & Yanovsky, V. (1999). Petawatt laser pulses. Opt. Lett. 24, 160162.CrossRefGoogle ScholarPubMed
Rajeev, P.P., Taneja, P., Ayyub, P., Sandhu, A.S. & Kumar, G.R. (2003). Metal nanoplasmas as bright sources of hard X-ray pulses. Phys. Rev. Lett. 90, 115002.CrossRefGoogle ScholarPubMed
Ruhl, H., Sentoku, Y., Mima, K., Tanaka, K.A. & Kodama, R. (1999). Collimated electron jets by intense laser-beam–plasma surface interaction under oblique incidence. Phys. Rev. Lett. 82, 743.CrossRefGoogle Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Fast ignition integrated interconnecting code project for cone-guided targets. Laser Particle Beams 24, 191198.CrossRefGoogle Scholar
Sentoku, Y., Mima, K., Ruhl, H., Toyama, Y., Kodama, R. & Cowan, T.E. (2004). Laser light and hot electron micro focusing using a conical target. Phys. Plasmas 11, 3083.CrossRefGoogle Scholar
Sodha, M.S., Mishra, S.K. & Misra, S. (2009). Focusing of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 27, 5768.CrossRefGoogle Scholar
Stephens, R.B., Hatchett, S.P., Turner, R.E., Tanaka, K.A. & Kodama, R. (2003). Implosion of indirectly driven reentrant-cone shell target. Phys. Rev. Lett. 91, 185001.CrossRefGoogle ScholarPubMed
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Van Woerkom, L., Akli, K.U., Bartal, T., Beg, F.N., Chawla, S., Chen, C.D., Chowdhury, E., Freeman, R.R., Hey, D., Key, M.H., King, J.A., Link, A., Ma, T., Mackinnon, A.J., Macphee, A.G., Offermann, D., Ovchinnikov, V., Patel, P.K., Schumacher, D.W., Stephens, R.B. & Tsui, Y.Y. (2008). Fast electron generation in cones with ultraintense laser pulses. Phys. Plasmas 15, 056304.CrossRefGoogle Scholar
Willi, O., Toncian, T., Borghesi, M., Fuchs, J., D'humieres, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C., Pipahl, A. & Romagnani, L. (2007). Laser triggered micro-lens for focusing and energy selection of MeV protons, Laser Part. Beams 25, 71.CrossRefGoogle Scholar
Xu, H., Chang, W.W., Zhuo, H.B., Cao, L.H. & Yue, Z.W. (2002). Parallel programming of 2(1/2)-dimensional PIC under distributed-memory parallel environments. Chin. J. Comput. Phys. 19, 305.Google Scholar
Yu, W., Cao, L., Yu, M.Y., Cai, H., Yang, X., Lei, A. & Kodama, R. (2009). Plasma channeling by multiple short-pulse lasers. Laser Part. Beams 27, 109114.CrossRefGoogle Scholar