Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T05:58:43.479Z Has data issue: false hasContentIssue false

Finite-emittance Wigner crystals in the bubble regime

Published online by Cambridge University Press:  23 July 2020

Lars Reichwein*
Affiliation:
Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, D-40225Düsseldorf, Germany
*
Author for correspondence: L. Reichwein, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany. E-mail: [email protected]

Abstract

We study the influence of finite-emittance electron bunches in the bubble regime of laser-driven wakefield acceleration onto the microscopic structure of the bunch itself. Using resilient backpropagation (Rprop) to find the equilibrium structure, we observe that for realistic and already observed emittances the previously found crystalline structures remain intact and are only widened marginally. Higher emittances lead to larger electron displacements within the crystal and finally its breaking.

Type
Research Article
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baxevanis, P, Hogan, MJ, Huang, Z, Litos, M, O'Shea, B, Raubenheimer, TO, Frisch, JC, White, G, Xu, XL and Mori, W (2017) Operation and applications of a plasma wakefield accelerator based on the density down-ramp injection technique. AIP Conference Proceedings 1812, 100013.CrossRefGoogle Scholar
Chen, M, Esarey, E, Geddes, CGR, Cormier-Michel, E, Schroeder, CB, Bulanov, SS, Benedetti, C, Yu, LL, Rykovanov, S, Bruhwiler, DL and Leemans, WP (2014) Electron injection and emittance control by transverse colliding pulses in a laser-plasma accelerator. Physical Review Special Topics – Accelerators and Beams 17, 051303.CrossRefGoogle Scholar
de la Ossa, AM, Hu, Z, Streeter, MJV, Mehrling, TJ, Kononenko, O, Sheeran, B, Osterhoff, J (2017) Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators. Physical Review – Accelerators and Beams 20, 091301.CrossRefGoogle Scholar
Esarey, E, Schroeder, C and Leemans, W (2009) Physics of laser-driven plasma-based electron accelerators. Reviews of Modern Physics 81, 1229.CrossRefGoogle Scholar
Hidding, B, Rosenzweig, JB, Xi, Y, O'Shea, B, Andonian, G, Schiller, D, Barber, S, Williams, O, Pretzler, G, Königstein, T, Kleeschulte, F, Hogan, MJ, Litos, M, Corde, S, White, WW, Muggli, P, Bruhwiler, DL and Lotov, K (2012) Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration. AIP Conference Proceedings 1507, 570.Google Scholar
Jackson, JD, Witte, C and Diestelhorst, M (2013) Klassische Elektrodynamik. Berlin/Boston: Walter de Gruyter GmbH.CrossRefGoogle Scholar
James, D (1998) Quantum dynamics of cold trapped ions with application to quantum computation. Applied Physics B: Lasers and Optics 66, 181190.CrossRefGoogle Scholar
Kostyukov, I, Pukhov, A and Kiselev, S (2004) Phenomenological theory of laser-plasma interaction in bubble regime. Physics of Plasmas 11, 52565264.CrossRefGoogle Scholar
Leemans, WP, Gonsalves, AJ, Mao, H -S, Nakamura, K, Benedetti, C, Schroeder, CB, Tóth, C, Daniels, J, Mittelberger, DE, Bulanov, SS, Vay, J -L, Geddes, CGR and Esarey, E (2014) Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Physical Review Letters 113, 245002.CrossRefGoogle ScholarPubMed
Lu, W, Tzoufras, M, Joshi, C, Tsung, F, Mori, W, Vieira, J, Fonseca, R and Silva, L (2007) Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Physical Review Special Topics – Accelerators and Beams 10, 061301.CrossRefGoogle Scholar
Malka, V (2012) Laser plasma accelerators. Physics of Plasmas 19, 055501.CrossRefGoogle Scholar
Petrillo, V, Bacci, A, Zinati, RBA, Chaikovska, I, Curatolo, C, Ferrario, M, Maroli, C, Ronsivalle, C, Rossi, AR, Serafini, L, Tomassini, P, Vaccarezza, C and Variola, A (2012) Photon flux and spectrum of Compton sources. Nuclear Instruments and Methods in Physics Research Section A 693, 109116.CrossRefGoogle Scholar
Pronold, J, Thomas, J and Pukhov, A (2018) External electron injection, trapping, and emittance evolution in the blow-out regime. Physics of Plasmas 25, 123112.CrossRefGoogle Scholar
Pukhov, A and Meyer-ter Vehn, J (2002) Laser wakefield acceleration: the highly non-linear broken-wave regime. Applied Physics B: Lasers and Optics 74, 355.CrossRefGoogle Scholar
Reichwein, L (2020) Struktur von Coulomb-Clustern im Bubble-Regime. Wiesbaden: Springer Spektrum.CrossRefGoogle Scholar
Reichwein, L, Thomas, J and Pukhov, A (2018) Two-dimensional structures of electron bunches in relativistic plasma cavities. Physical Review E 98, 013201.CrossRefGoogle ScholarPubMed
Reichwein, L, Thomas, J and Pukhov, A (2020) The filamented electron bunch of the bubble regime. Laser and Particle Beams 38, 121127.CrossRefGoogle Scholar
Riedmiller, M and Braun, H (1993) A direct adaptive method for faster backpropagation learning: the RPROP algorithm. IEEE International Conference on Neural Networks, San Francisco, CA, USA.Google Scholar
Sävert, A, Mangles, SPD, Schnell, M, Siminos, E, Cole, JM, Leier, M, Reuter, M, Schwab, MB, Möller, M, Poder, K, Jäckel, O, Paulus, GG, Spielmann, C, Skupin, S, Najmudin, Z and Kaluza, MC (2015) Direct observation of the injection dynamics of a laser wakefield accelerator using few-femtosecond shadowgraphy. Physical Review Letters 115, 055002.CrossRefGoogle ScholarPubMed
Schiffer, J (1995) Crystalline beams. Proceedings Particle Accelerator Conference, Dallas, TX, USA.Google Scholar
Schnell, M, Sävert, A, Landgraf, B, Reuter, M, Nicolai, M, Jäckel, O, Peth, C, Thiele, T, Jansen, O, Pukhov, A, Willi, O, Kaluza, MC and Spielmann, C (2012) Deducing the electron-beam diameter in a laser-plasma accelerator using x-ray betatron radiation. Physical Review Letters 108, 075001.CrossRefGoogle Scholar
Schroeder, C, Benedetti, C, Esarey, E, Chen, M and Leemans, W (2018) Two-color ionization injection using a plasma beatwave accelerator. Nuclear Instruments & Methods in Physics Research, Section A 909, 149152.CrossRefGoogle Scholar
Tajima, T and Dawson, JM (1979) Laser electron accelerator. Physical Review Letters 43, 267.CrossRefGoogle Scholar
Thomas, J, Günther, MM and Pukhov, A (2017) Beam load structures in a basic relativistic interaction model. Physics of Plasmas 24, 013101.CrossRefGoogle Scholar
Tooley, MP, Ersfeld, B, Yoffe, SR, Noble, A, Brunetti, E, Sheng, ZM, Islam, MR and Jaroszynski, DA (2017) Towards attosecond high-energy electron bunches: controlling self-injection in laser-wakefield accelerators through plasma-density modulation. Physical Review Letters 119, 044801.CrossRefGoogle ScholarPubMed
Wang, J, Feng, J, Zhu, C, Li, Y, He, Y, Li, D, Tan, J, Ma, J and Chen, L (2018) Small energy spread electron beams from laser wakefield acceleration by self-evolved ionization injection. Plasma Physics and Controlled Fusion 60, 034004.CrossRefGoogle Scholar