Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T17:43:14.948Z Has data issue: false hasContentIssue false

Feasibility study of the magnetic beam self-focusing phenomenon in a stack of conducting foils: Application to TNSA proton beams

Published online by Cambridge University Press:  18 December 2012

P.A. Ni*
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, California
B.G. Logan
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, California
S.M. Lund
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
N. Alexander
Affiliation:
General Atomics, San Diego, California
F.M. Bieniosek
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, California
R.H. Cohen
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
M. Roth
Affiliation:
TU-Darmstadt, Germany
G. Schaumann
Affiliation:
TU-Darmstadt, Germany
*
Address correspondence and reprint requests to: Pavel Ni, Lawrence Berkeley National Laboratory, Berkeley, CA. E-mail: [email protected]

Abstract

This paper investigates prospects of utilizing a high-power laser-driven target-normal-sheath-acceleration proton beam for the experimental demonstration of the magnetic self-focusing phenomenon in charged particle beams. In the proposed concept, focusing is achieved by propagating a space-charge dominated ion beam through a stack of thin conducting and grounded foils separated by vacuum gaps. As the beam travels through the system, image charges build up at the foils and generate electric field that counteracts the beam's electrostatic self-field — a dominant force responsible for expansion of a high current beam. Once the electrostatic self-field is “neutralized” by the image charges, the beam currents magnetic self-field will do the focusing. The focal spot size and focal length depends on the choice of a number of foils and distance between foils. Considering the typical electrical current level of a target-normal-sheath-acceleration proton beam, we conclude that it is feasible to focus or collimate a beam within tens of millimeters distance, e.g., using 200–1000 Al foils, 0.5 µm thick each, with foil spacing ranging from 25 µm to 100 µm. These requirements are within technical capabilities of modern target fabrication, thus allowing the first possible demonstration of the pinch effect with heavy ion beams.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler, R.J. (1982). Part. Accel. 12, 39.Google Scholar
Bartal, T., et al. (2011). Nature doi:10.1038/nphys2153.Google Scholar
Basko, M.M., Drozdovskii, A.A., Golubev, A.A., Gubskii, K.L., Iosseliani, D.D., Kantsyrev, A.V., Karpov, M.A., Kuznetsov, A.P., Novozhilov, Yu.B., Pronin, O.V., Savin, S.M., Sasorov, P.V., Sobur, D.A., Sharkov, B.Yu. & Yanenko, V.V. (2008). Phys. Part. Nucl. Lett. 5, 582585.CrossRefGoogle Scholar
Bellei, C., Foord, M.E., Bartal, T., Key, M.H., McLean, H.S., Patel, P.K., Stephens, R.B. & Beg, F.N. (2012). Phys. Plasmas 19, 033109.CrossRefGoogle Scholar
Borghesi, M., et al. (2004). Phys. Rev. Lett. 92, 055003.CrossRefGoogle Scholar
Borghesi, M., Sarri, G., Cecchetti, C.A., Kourakis, I., Hoarty, D., Stevenson, R.M., James, S., Brown, C.D., Hobbs, P., Lockyear, J., Morton, J., Willi, O., Jung, R. & Dieckmann, M. (2010). Progress in proton radiography for diagnosis of ICF-relevant plasmas. Laser Part. Beams 28, 277284.CrossRefGoogle Scholar
Brambrink, E., Roth, M., Abel Blazevic, A. & Schlegel, T. (2006). Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part. Beams 24, 163168.CrossRefGoogle Scholar
Fernsler, R.F., Hubbard, R.F. & Slinker, S.P. (1990). J. Appl. Phys. 68, 5985.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernández, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Harres, K., Alber, I., Tauschwitz, A., Bagnoud, V., Daido, H., Gunther, M., Nurnberg, F., Otten, A., Schollmeier, M. & Schtrumpf, J. (2010). Phys. Plasmas 17, 023107.CrossRefGoogle Scholar
Hatchett, S., Brown, C., Cowan, T.E., Henry, E.A., Johnson, J., Key, M.H., Koch, J.A., Langdon, A.B., Lasinsky, B.F., Lee, R.W., et al. (2000). Phys. Plasmas 7, 2076.CrossRefGoogle Scholar
Henestroza, E., Logan, B.G. & Perkins, L.J. (2011). Phys. Plasmas 18, 032702.CrossRefGoogle Scholar
Hubbard, R.F., Goldstein, S.A. & Tidman, D.A. (1979). Knock-on electrons in the target chamber. Proceedings of the Heavy Ion Fusion Workshop, Berkeley, California.Google Scholar
Humphries, S., Ekdahl, C. & Woodall, D.M. (1989). Appl. Phys. Lett. 54, 2195.CrossRefGoogle Scholar
Lund, S.M., Cohen, R.H. & Ni, P.A. (2012). Envelope model for passive magnetic focusing of an intense proton or ion beam propagating through thin foils. Phys. Rev. Accel. Beams.Google Scholar
Nishiuchi, M., et al. (2010). Phys. Rev. Accel. Beams 13, 071304.Google Scholar
Olson, C.L. & Schumacher, U. (1979). Collective Ion Acceleration. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Phys. Rev. Lett. 91, 125004.Google Scholar
Romagnani, L., Borghesi, M., Cecchetti, C.A., Kar, S., Antici, P., Audebert, P., Bandhoupadjay, S., Ceccherini, F., Cowan, T., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Heathcote, R., Jung, R., Liseykina, T.V., Macchi, A., Mora, P., Neely, D., Notley, M., Osterholtz, J., Pipahl, C.A., Pretzler, G., Schiavi, A., Schurtz, G., Toncian, T., Wilson, P.A. & Willi, O. (2008). Proton probing measurement of electric and magnetic fields generated by ns and ps laser-matter interactions. Laser Part. Beams 26, 241248.CrossRefGoogle Scholar
Roth, M., Alber, I., Bagnoud, V., Brown, C.R.D., Clarke, R., Daido, H., Fernandez, J., Flippo, K., Gaillard, S., Gauthier, C., Geissel, M., Glenzer, S., Gregori, G., Günther, M., Harres, K., Heathcote, R., Kritcher, A., Kugland, N., LePape, S., Li, B., Makita, M., Mithen, J., Niemann, C., Nürnberg, F., Offermann, D., Otten, A., Pelka, A., Riley, D., Schaumann, G., Schollmeier, M., Schütrumpf, J., Tampo, M., Tauschwitz, A. & Tauschwitz, A. (2009). Plasma Phys. Contr. Fusion 51, 124039.Google Scholar
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Gauthier, J.-C., Audebert, P., Fuchs, J., ter Vehn, J.M., et al. (2002). Phys. Rev. Accel. Beams 5, 061301.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A. & Wilks, S.C. (2001). Phys. Rev. Lett. 86, 436.CrossRefGoogle Scholar
Seidl, P.A., Anders, A., Bieniosek, F.M., Barnard, J.J., Calanog, J., Chen, A.X., Cohen, R.H., Coleman, J.E., Dorf, M., Gilson, E.P., Grote, D.P., Jung, J.Y., Leitner, M., Lidia, S.M., Logan, B.G., Ni, P., Roy, P.K., Van den Bogert, K., Sefkow, A.B., Waldron, W.L & Welch, D.R. (2008). Progress In Beam Focusing and Compression for Warm-Dense Matter Experiments Heavy Ion Fusion Symposium 2008, Tokyo, Japan.Google Scholar
Snavely, R.A., et al. . (2000). Phys. Rev. Lett. 85, 2945.CrossRefGoogle Scholar
SRIM. (2012). The stopping and range of ions in matter. www.srim.org.Google Scholar
Tauschwitz, A., Boggasch, E., Hoffmann, D.H.H., Jacoby, J., Neuner, U., Stetter, M., Stöwe, S., Tkotz, R., De Magistris, M. & Seelig, W. (1995). Heavy-ion beam focusing with a wall-stabilized plasma lens. Laser Part. Beams 13, 221229.CrossRefGoogle Scholar
Ter-Avetisyan, S., Schnürer, M., Polster, R., Nickles, P.V. & Sandner, W. (2008). First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser Part. Beams 26, 637642.CrossRefGoogle Scholar
Yang, X.H., Ma, Y.Y., Shao, F.Q., Xu, H., Yu, M.Y., Gu, Y.Q., Yu, T.P., Yin, Y., Tian, C.L. & Kawata, S. (2010). Collimated proton beam generation from ultraintense laser-irradiated hole target. Laser Part. Beams 28, 319325.CrossRefGoogle Scholar