Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T23:40:39.456Z Has data issue: false hasContentIssue false

Extension of harmonic cut-off in a waveform controlled laser field by prolonging the recombining period

Published online by Cambridge University Press:  20 July 2010

Junjie Xu*
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Yongli Yu
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Bin Zeng
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
*
Address correspondence and reprint requests to: Junjie Xu, State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800, China. E-mail: [email protected]

Abstract

We present a novel waveform synthesized by a half-cycle fundamental wave (800 nm) and a half-cycle subharmonic wave (2400 nm) with an appropriate carrier-envelope phase and a phase delay, in which more ionized electrons can recombine with its parent ions to emit high-order harmonic, giving rise to both the extension of the extreme ultraviolet supercontinuum and the enhancement of harmonic conversion efficiency. An isolated attosecond pulse with considerable energy is obtained as well. By performing time-frequency analyses, it is revealed that the prolonged opposite electric field increases the recombining probability of high-energy electrons.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ammosov, M.V., Deone, N.B. & Krainov, V.P. (1986). Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 11911194.Google Scholar
Baeva, T., Gordienko, S. & Pukhov, A. (2007). Relativistic plasma control for single attosecond pulse generation: Theory, simulations, and structure of the pulse. Laser Part. Beams 25, 339346.CrossRefGoogle Scholar
Cheng, Y. & Xu, Z.Z. (1999). Vacuum laser acceleration by an ultrashort, high-intensity laser pulse with a sharp rising edge. Appl. Phys. Lett. 74, 21162118.CrossRefGoogle Scholar
Corkum, P.B. (1993). Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 19941997.CrossRefGoogle ScholarPubMed
Dombi, P., Racz, P. & Bodi, B. (2009). Surface plasmon enhanced electron acceleration with few-cycle laser pulses. Laser Part. Beams 27, 291296.CrossRefGoogle Scholar
Dromey, B., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kar, S., Kneip, S., Markey, K., Nagel, S.R., Willingale, L., McKenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2009). Third harmonic order imaging as a focal spot diagnostic for high intensity laser-solid interactions. Laser Part. Beams 27, 243248.CrossRefGoogle Scholar
Drescher, M., Hentschel, M., Kienberger, R., Uiberacker, M., Yakovlev, V., Scrinzi, A., Westerwalbesloh, T., Kleineberg, U., Heinzmann, U. & Krausz, F. (2002). Time-resolved atomic inner-shell spectroscopy. Nat. (London) 419, 803807.CrossRefGoogle ScholarPubMed
Gupta, M.K., Sharma, R.P. & Mahmoud, S.T. (2007). Generation of plasma wave and third harmonic generation at ultra relativistic laser power. Laser Part. Beam 25, 211218.CrossRefGoogle Scholar
Hafeez, S., Shaikh, N.M. & Baig, M.A. (2008). Spectroscopic studies of Ca plasma generated by the fundamental, second, and third harmonics of a Nd:YAG laser. Laser Part. Beams 26, 4150.CrossRefGoogle Scholar
Hentschel, M., Kienberger, R., Spielmann, CH., Reider, G.A., Milosevic, N., Brabec, T., Corkum, P., Heinzmann, U., Drescher, M. & Krausz, F. (2001). Attosecond metrology. Nat. (London) 414, 509513.Google ScholarPubMed
Hong, W.Y., Lu, P.X., Li, Q.G. & Zhang, Q.B. (2009). Broadband water window supercontinuum generation with a tailored mid-IR pulse in neutral media. Opt. Lett. 34, 21022104.CrossRefGoogle ScholarPubMed
Kienberger, R., Goulielmakis, E., Uiberacker, M., Baltuska, A., Yakovlev, V., Bammer, F., Scrinzi, A., Westerwalbesloh, TH., Kleineberg, U., Heinzmann, U., Drescher, M. & Krausz, F. (2004). Atomic transient recorder. Nat. (London) 427, 817821.CrossRefGoogle ScholarPubMed
Ivanov, M., Corkum, P.B., Zuo, T. & Bandrauk, A. (1995). Routes to control of intense-field atomic polarizability. Phys. Rev. Lett. 74, 29332936.CrossRefGoogle ScholarPubMed
Krausz, F. & Ivanov, M. (2009). Attosecond physics. Rev. Mod. Phys. 81, 163234.CrossRefGoogle Scholar
Lewenstein, M., Balcou, P., Ivanov, Y., L’Huillier, A. & Corkum, P.B. (1994). Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 21172132.CrossRefGoogle ScholarPubMed
Lin, Q., Zheng, J. & Becker, W. (2006). Subcycle pulse focused vector beams. Phys. Rev. Lett. 97, 253902/1–4.CrossRefGoogle ScholarPubMed
Liu, T.T., Kanai, T., Sekikawa, T. & Watanabe, S. (2006). Significant enhancement of high-order harmonics below 10 nm in a two-color laser field. Phys. Rev. A 73, 063823/1–8.CrossRefGoogle Scholar
Mansten, E., Dahlström, J.M., Johnsson, P., Swoboda, M., L’Huillier, A. & Mauritsson, J. (2008). Spectral shaping of attosecond pulses using two-colour laser fields. New J. Phys. 10, 083041.CrossRefGoogle Scholar
Ozaki, T., Bom, L.B.E., Ganeev, R., Kieffer, J.C., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.CrossRefGoogle Scholar
Pfeifer, T., Gallmann, L., Abel, M.J., Neumark, D.M. & Leone, S.R. (2006). Single attosecond pulse generation in the multicycle-driver regime by adding a weak secondharmonic field. Opt. Lett. 31, 975977.CrossRefGoogle ScholarPubMed
Priori, E., Cerullo, G., Nisoli, M., Stagira, S., De Silvestri, S., Villoresi, P., Poletto, L., Ceccherini, P., Altucci, C., Bruzzese, R., De Lisio, C. (2000). Nonadiabatic three-dimensional model of high-order harmonic generation in the few-optical-cycle regime. Phys. Rev. A 61, 063801/1–8.CrossRefGoogle Scholar
Sansone, G., Benedetti, E., Calegari, F., Vozzi, C., Avaldi, L., Flammini, R., Poletto, L., Villoresi, P., Altucci, C., Velotta, R., Stagira, S., De Silvestri, S. & Nisoli, M. (2006). Isolated single-cycle attosecond pulses. Sci. 314, 443446.CrossRefGoogle ScholarPubMed
Sharma, R.P. & Sharma, P. (2009). Effect of laser beam filamentation on second harmonic spectrum in laser plasma interaction. Laser Part. Beams 27, 157169.CrossRefGoogle Scholar
Tate, J., Auguste, T., Muller, H.G., Salières, P., Agostini, P. & DiMauro, L.F. (2007). Scaling of wave-packet dynamics in an intense midinfrared field. Phys. Rev. Lett. 98, 013901.CrossRefGoogle Scholar
Teubner, U. & Gibbon, P. (2009). High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445479.CrossRefGoogle Scholar
Varro, S. & Farkas, G. (2008). Attosecond electron pulses from interference of above-threshold de Broglie waves. Laser Part. Beams 26, 919.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2009). Laser second harmonic generation in a rippled density plasma in the presence of azimuthal magnetic field. Laser Part. Beams 27, 719724.CrossRefGoogle Scholar
Zeng, Z.N., Cheng, Y., Song, X.H., Li, R.X. & Xu, Z.Z. (2007). Generation of an extreme ultraviolet supercontinuum in a two-color laser field. Phys. Rev. Lett. 98, 203901.CrossRefGoogle Scholar
Zhang, Q.B., Lu, P.X., Hong, W.Y., Liao, Q., Lan, P.F. & Wang, X.B. (2009). Enhanced high-order harmonic generation via controlling ionization in spatially extended systems. Phys. Rev. A 79, 053406/1–7.CrossRefGoogle Scholar
Zheng, Y.H., Zeng, Z.N., Li, X.F., Chen, X.W., Liu, P., Xiong, H., Lu, H., Zhao, S.T., Wei, P.F., Zhang, L., Wang, Z.G., Liu, J., Cheng, Y., Li., R.X. & Xu., Z.Z. (2008). Enhancement and broadening of extreme-ultraviolet supercontinuum in a relative phase controlled two-color laser field. Opt. Lett. 33, 234236.CrossRefGoogle Scholar