Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T07:33:19.093Z Has data issue: false hasContentIssue false

Extension of a reduced entropic model of electron transport to magnetized nonlocal regimes of high-energy-density plasmas

Published online by Cambridge University Press:  20 June 2016

D. Del Sorbo*
Affiliation:
Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications, UMR 5107, F-33405 Talence, France
J.-L. Feugeas
Affiliation:
Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications, UMR 5107, F-33405 Talence, France
Ph. Nicolaï
Affiliation:
Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications, UMR 5107, F-33405 Talence, France
M. Olazabal-Loumé
Affiliation:
CEA/CESTA, F-33114 Le Barp, France
B. Dubroca
Affiliation:
Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications, UMR 5107, F-33405 Talence, France
V. Tikhonchuk
Affiliation:
Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications, UMR 5107, F-33405 Talence, France
*
Address correspondence and reprint requests to: D. Del Sorbo, Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications, UMR 5107, F-33405 Talence, France. E-mail: [email protected]

Abstract

Laser-produced high-energy-density plasmas may contain strong magnetic fields that affect the energy transport, which can be nonlocal. Models which describe the magnetized nonlocal transport are formally complicated and based on many approximations. This paper presents a more straightforward approach to the description of the electron transport in this regime, based on the extension of a reduced entropic model. The calculated magnetized heat fluxes are compared with the known asymptotic limits and applied for studying of a magnetized nonlocal plasma thermalization.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albritton, J.R. (1983). Laser absorption and heat transport by non-Maxwell-Boltzmann electron distributions. Phys. Rev. Lett. 50(26), 2078.CrossRefGoogle Scholar
Albritton, J.R., Williams, E.A., Bernstein, I.B. & Swartz, K.P. (1986). Nonlocal electron heat transport by not quite Maxwell-Boltzmann distributions. Phys. Rev. Lett., 57(15), 1887.CrossRefGoogle Scholar
Bell, A.R. (1985). Non-spitzer heat ow in a steadily ablating laser-produced plasma. Phys. Fluids (1958–1988) 28(6), 20072014.CrossRefGoogle Scholar
Bell, A.R., Robinson, A.P.L., Sherlock, M., Kingham, R.J. & Rozmus, W. (2006). Fast electron transport in laserproduced plasmas and the KALOS code for solution of the Vlasov–Fokker–Planck equation. Plamsa Phys. Control. Fusion 48(3), R37.Google Scholar
Bhatnagar, P.L., Gross, E.P. & Krook, M. (1954). A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511.CrossRefGoogle Scholar
Braginskii, S. (1965). Reviews of Plasmas Physics. New York, M. Leontovitch (Consultants Bureau).Google Scholar
Brantov, A.V., Yu Bychenkov, V., Rozmus, W., Capjack, C.E. & Sydora, R. (2003). Linear theory of nonlocal transport in a magnetized plasma. Phys. Plasmas 10(12), 46334644.CrossRefGoogle Scholar
Breil, J. & Maire, P.-H. (2007). A cell-centered diffusion scheme on two-dimensional unstructured meshes. J. Comput. Phys. 224(2), 785823.CrossRefGoogle Scholar
Caron, J., Feugeas, J.-L., Dubroca, B., Kantor, G., Dejean, C., Birindelli, G., Pichard, T., Nicolaï, Ph., d'Humières, E., Frank, M. & Tikhonchuk, V. (2015). Deterministic model for the transport of energetic particles: Application in the electron radiotherapy. Phys. Med. 31(8), 912921.Google Scholar
Clark, E.L., Krushelnick, K., Davies, J.R., Zepf, M., Tatarakis, M., Beg, F.N., Machacek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000). Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84(4), 670.CrossRefGoogle ScholarPubMed
Craxton, R.S., Anderson, K.S., Boehly, T.R., Goncharov, V.N., Harding, D.R., Knauer, J.P., McCrory, R.L., McKenty, P.W., Meyerhofer, D.D., Myatt, J.F., Schmitt, A.J., Sethian, J.D., Short, R.W., Skupsky, S., Theobald, W., Kruer, W.L., Tanaka, K., Betti, R., Collins, T.J.B., Delettre, J.A., Hu, S.X., Marozas, J.A., Maximov, A.V., Michel, D.T., Radha, P.B., Regan, S.P., Sangster, T.C., Seka, W., Solodov, A.A., Soures, J.M., Stoeckl, C. & Zuegel, J.D. (2015). Direct-drive inertial confinement fusion: A review. Phys. Plasmas 22(11), 110501.CrossRefGoogle Scholar
Cuneo, M.E., Herrmann, M.C., Sinars, D.B., Slutz, S.A., Stygar, W.A., Vesey, R.A., Sefkow, A.B., Rochau, G.A., Chandler, G.A., Bailey, J.E., Porter, J.L., McBride, R.D., Rovang, D.C., Mazarakis, M.G., Yu, E.P., Lamppa, D.C., Peterson, K.J., Nakhleh, C., Hansen, S.B., Lopez, A.J., Savage, M.E., Jennings, C.A., Martin, M.R., Lemke, R.W., Atherton, B.W., Smith, I.C., Rambo, P.K., Jones, M., Lopez, M.R., Christenson, P.J., Sweeney, M.A., Jones, B., McPherson, L.A., Harding, E., Gomez, M.R., Knapp, P.F., Awe, T.J., Leeper, R.J., Ruiz, C.L., Cooper, G.W., Hahn, K.D., McKenney, J., Owen, A.C., McKee, G.R., Leifeste, G.T., Ampleford, D.J., Waisman, E.M., Harvey-Thompson, A., Kaye, R.J., Hess, M.H., Rosenthal, S.E. & Matzen, M.K. (2012). Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories. IEEE Trans. Plasma Sci. 40(12), 32223245.Google Scholar
Del Sorbo, D. (2015). An Entropic Approach to Magnetized Nonlocal Transport and Other Kinetic Phenomena in High-Energy-Density Plasmas. PhD thesis, Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications, UMR 5107, F-33405 Talence, France.Google Scholar
Del Sorbo, D., Arikawa, Y., Batani, D., Beg, F., Breil, J., Chen, H., Feugeas, J.-L., Fujioka, S., Hulin, S., Koga, M., MacLean, H., Morace, A., Namimoto, T., Nazarov, W., Nicolai, Ph., Nishimura, H., Ozaki, T., Sakaki, T., Santos, J.J., Spindloe, Ch., Tanaka, K.A., Vaisseau, X., Veltcheva, M., Yabuchi, T. & Zhang, Z. (2015 a). Approach to the study of fast electron transport in cylindrically imploded targets. Laser Part. Beam 33(03), 525534.Google Scholar
Del Sorbo, D., Feugeas, J.-L., Nicolaï, Ph., Olazabal-Loumé, M., Dubroca, B., Guisset, S., Touati, M. & Tikhonchuk, V. (2015b). Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas. Phys. Plasmas 22(8), 082706.CrossRefGoogle Scholar
Dubroca, B., Feugeas, J.-L. & Frank, M. (2010). Angular moment model for the Fokker–Planck equation. Eur. Phys. J. D: At. Mol. Opt. Plasma Phys. 60(2), 301307.CrossRefGoogle Scholar
Epperlein, E.M. & Haines, M.G. (1986). Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation. Phys. Fluids 29(4), 10291041.CrossRefGoogle Scholar
Epperlein, E.M. & Short, R.W. (1991). A practical nonlocal model for electron heat transport in laser plasmas. Phys. Fluids B: Plasma Phys. 3(11), 30923098.Google Scholar
Epperlein, E.M. & Short, R.W. (1992). Nonlocal heat transport effects on the filamentation of light in plasmas. Phys. Fluids B: Plasma Phys. 4(7), 22112216.Google Scholar
Froula, D.H., Ross, J.S., Pollock, B.B., Davis, P., James, A.N., Divol, L., Edwards, M.J., Offenberger, A.A., Price, D., Town, R.P.J. et al. (2007). Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging thomson scattering. Phys. Rev. Lett. 98(13), 135001.Google Scholar
Gregori, G., Ravasio, A., Murphy, C.D., Schaar, K., Baird, A., Bell, A.R., Benuzzi-Mounaix, A., Bingham, R., Constantin, C., Drake, R.P., Edwards, M., Everson, E.T., Gregory, C.D., Kuramitsu, Y., Lau, W., Mithen, J., Niemann, C., Park, H.-S., Remington, B.A., Reville, B., Robinson, A.P.L., Ryutov, D.D., Sakawa, Y., Yang, S., Woolsey, N.C., Koenig, M. & Miniati, F. (2012). Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves. Nature 481(7382), 480483.Google Scholar
Hu, S.X., Smalyuk, V.A., Goncharov, V.N., Skupsky, S., Sangster, T.C., Meyerhofer, D.D. & Shvarts, D. (2008). Validation of thermal-transport modeling with direct-drive, planar-foil acceleration experiments on Omega. Phys. Rev. Lett. 101(5), 055002.Google Scholar
Kingham, R.J. & Bell, A.R. (2002). Nonlocal magnetic-field generation in plasmas without density gradients. Phys. Rev. Lett. 88(4), 045004.Google Scholar
Landau, L.D. & Lifshitz, E.M. (1981). Phyisical Kinetics. Robert Maxwell, M.C.Google Scholar
Malone, R.C., McCrory, R.L. & Morse, R.L. (1975). Indications of strongly flux-limited electron thermal conduction in laser-target experiments. Phys. Rev. Lett. 34(12), 721.CrossRefGoogle Scholar
Manheimer, W., Colombant, D. & Goncharov, V. (2008). The development of a Krook model for nonlocal transport in laser produced plasmas. i. basic theory. Phys. Plasmas 15(8), 083103.Google Scholar
Marocchino, A., Atzeni, S. & Schiavi, A. (2015). Magnetic field generation and diffusion by a laser-produced blast wave propagating in non-homogenous plasma. New J. Phys. 17(4), 043052.Google Scholar
Marocchino, A., Tzoufras, M., Atzeni, S., Schiavi, A., Mallet, J., Tikhonchuk, V. & Feugeas, J.-L. (2013). Comparison for non-local hydrodynamic thermal conduction models. Phys. Plasmas 20(2), 022702.Google Scholar
Meezan, N.B., Divol, L., Marinak, M.M., Kerbel, G.D., Suter, L.J., Stevenson, R.M., Slark, G.E. & Oades, K. (2004). Hydrodynamics simulations of 2ω laser propagation in underdense gasbag plasmas. Phys. Plasmas 11(12), 55735579.CrossRefGoogle Scholar
Nicolaï, Ph., Feugeas, J.-L. & Schurtz, G.P. (2006). A practical nonlocal model for heat transport in magnetized laser plasmas. Phys. Plasmas 13(3), 032701.CrossRefGoogle Scholar
Schurtz, G.P., Nicoaï, Ph. & Busquet, M. (2000). A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes. Phys. Plasmas 7(10), 42384249.Google Scholar
Spitzer, L. & Härm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev. 89(5), 977.Google Scholar
Stamper, J.A., Papadopoulos, K., Sudan, R.N., Dean, S.O., McLean, E.A. & Dawson, J.M. (1971). Spontaneous magnetic fields in laser-produced plasmas. Phys. Rev. Lett. 26(17), 1012.Google Scholar
Strozzi, D.J., Tabak, M., Larson, D.J., Divol, L., Kemp, A.J., Bellei, C., Marinak, M.M. & Key, M.H. (2012). Fast-ignition transport studies: realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields. Phys. Plasmas 19(7), 072711.CrossRefGoogle Scholar
Touati, M., Feugeas, J.-L., Nicolaï, Ph., Santos, J.J., Gremillet, L. & Tikhonchuk, V. (2014). A reduced model for relativistic electron beam transport in solids and dense plasmas. New J. Phys. 16(7), 073014.Google Scholar
Tzoufras, M., Bell, A.R., Norreys, P.A. & Tsung, F.S. (2011). A Vlasov–Fokker–Planck code for high energy density physics. J. Comput. Phys. 230(17), 64756494.Google Scholar