Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T07:49:40.408Z Has data issue: false hasContentIssue false

Experimental studies of generation of ~100 MeV Au-ions from the laser-produced plasma

Published online by Cambridge University Press:  28 January 2009

L. Láska*
Affiliation:
Institute of Physics, ASCR, v.v.i., Prague, Czech Republic
J. Krása
Affiliation:
Institute of Physics, ASCR, v.v.i., Prague, Czech Republic
A. Velyhan
Affiliation:
Institute of Physics, ASCR, v.v.i., Prague, Czech Republic
K. Jungwirth
Affiliation:
Institute of Physics, ASCR, v.v.i., Prague, Czech Republic
E. Krouský
Affiliation:
Institute of Physics, ASCR, v.v.i., Prague, Czech Republic
D. Margarone
Affiliation:
Institute of Physics, ASCR, v.v.i., Prague, Czech Republic Dipartimento di Fisica, Universita di Messina, Messina, Italy
M. Pfeifer
Affiliation:
Institute of Physics, ASCR, v.v.i., Prague, Czech Republic
K. Rohlena
Affiliation:
Institute of Physics, ASCR, v.v.i., Prague, Czech Republic
L. Ryć
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
J. Skála
Affiliation:
Institute of Physics, ASCR, v.v.i., Prague, Czech Republic
L. Torrisi
Affiliation:
Dipartimento di Fisica, Universita di Messina, Messina, Italy INFN-Laboratori Nazionali del Sud, Catania, Italy
J. Ullschmied
Affiliation:
Institute of Plasma Physics, ASCR, v.v.i., Prague, Czech Republic
*
Address correspondence and reprint requests to: L. Láska, Institute of Physics, ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic. E-mail: [email protected]

Abstract

Using the PALS iodine laser system, Au ions with the charge state up to 58+ and with the kinetic energy as high as ~300 MeV were generated. The production of these ions was tested in dependence on the laser frequency (1ω, 3ω), on the irradiation/detection angles (0°, 30°), on the focus position with regard to the target surface, and on the target thickness (500 µm, 200 µm, 80 µm). A larger amount of the fastest ions was produced with 1ω than with 3ω, the most of the fast ions were recorded in the direction ~10° from the target normal, the optimum focus position is in front of the target and should be set on with a precision of 50 µm. The forward emission is weaker than the backward one for both of the thinner targets (which burn through) at our experimental conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J. (2007). Laser-driven generation of fast particles. Opt. Electr. Rev. 15,112.CrossRefGoogle Scholar
Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.CrossRefGoogle Scholar
Borghesi, M., MacKinnon, A.J., Barringer, L., Gaillard, R., Gizzi, L.A., Meyer, C., Willi, O., Pukhov, A. & Meyer-ter-Vehn, J. (1997). Relativistic channeling of a picosecond laser pulse in a near-critical preformed plasma. Phys. Rev. Lett. 78, 879882.CrossRefGoogle Scholar
Borghesi, M., MacKinnon, A.J., Gaillard, R., Willi, O., Pukhov, A. & Meyer-ter-Vehn, J. (1998). Large quasistatic magnetic fields generated by a relativistically intense laser pulse propagating in a preformed plasma. Phys. Rev. Lett. 80, 51375140.CrossRefGoogle Scholar
Buttini, E., Thum-Jager, A. & Rohr, K. (1998). The mass dependence of the jet formation in laser-produced particle beams. J. Phys. D 31, 21652169.CrossRefGoogle Scholar
Clark, E.L., Krushelnik, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Noreys, P.A. & Dangor, A.E. (2000). Energetic heavy–ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.CrossRefGoogle ScholarPubMed
Ehler, A.W. (1975). High-energy ions from a CO2 laser-produced plasma. J. Appl. Phys. 46, 24642467.CrossRefGoogle Scholar
Haseroth, H. & Hora, H. (1996). Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources. Laser Part. Beams 14, 393438.CrossRefGoogle Scholar
Hauser, T., Scheid, W. & Hora, H. (1992). Theory of ions emitted from a plasma by relativistic self-focusing of laser beams. Phys. Rev. A45, 12781281.CrossRefGoogle Scholar
Hora, H. (1969). Self-focusing of laser beams in a plasma by ponderomotive forces. Z. Physik 226, 156159.CrossRefGoogle Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasma. J. Opt. Soc. Am. 65, 882886.CrossRefGoogle Scholar
Hora, H., Kane, E.L. & Hughes, J.L. (1978). Generation of MeV ions by relativistic self-focusing from laser-irradiated targets. J. Appl. Phys. 49, 923924.CrossRefGoogle Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.CrossRefGoogle Scholar
Jungwirth, K., Cejnarová, A., Juha, L., Králiková, B., Krása, J., Krouský, E., Krupicková, P., Láska, L., Mašek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skála, J., Straka, P. & Ullschmied, J. (2001). The Prague Asterix Laser System PALS. Phys. Plasmas 8, 24952501.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krouský, E., Mašek, K., Rohlena, K., Skála, J. & Hora, H. (2006). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Plasmas 13, 062704.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krouský, E., Mašek, K., Pfeifer, M., Rohlena, K., Skála, J. & Pisarczyk, P. (2007). Interferometric investigations of influence of target irradiation on the parameters of laser-produced plasma jets. Laser Part. Beams 25, 425434.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.CrossRefGoogle Scholar
Krása, J., Cejnarová, A., Juha, L., Ryć, L., Scholz, M. & Kubeš, P. (2002). Semiconductor and thermoluminescent dosimetry of pulsed soft X-ray plasma sources. Radiat. Prot. Dosim. 100, 429432.CrossRefGoogle ScholarPubMed
Krása, J., Jungwirth, K., Krouský, E., Láska, L., Rohlena, K., Pfeifer, M., Ullschmied, J. & Velyhan, A. (2007). Temperature and centre-of-mass energy of ions emitted by laser-produced polyethylene plasma. Plasma Phys. Control Fusion 49, 16491659.CrossRefGoogle Scholar
Láska, L., Krása, J., Mašek, K., Pfeifer, M., Králiková, B., Mocek, T., Skála, J., Straka, P., Trenda, P., Rohlena, K., Woryna, E., Farny, J., Parys, P., Wolowski, J., Mroz, W., Shumshurov, A., Sharkov, B., Collier, J., Langbein, K. & Haseroth, H. (1996). Iodine laser production of highly charged Ta ions. Czech. J. Phys. 46, 10991115.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Krása, J., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L. & Boody, F.P. (2005). Charge-state and energy enhancement of laser-produced ions due to nonlinear processes in preformed plasma. Appl. Phys. Lett. 86, 081502.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Krása, J., Krouský, E., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L. & Boody, F. P. (2006). Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions. Laser Part. Beams 24, 175179.CrossRefGoogle Scholar
Láska, L., Badziak, J., Boody, F. P., Gammino, S., Jungwirth, K., Krása, J., Krouský, E., Parys, P., Pfeifer, M., Rohlena, K., Ryć, L., Skála, J., Torrisi, L., Ullschmied, J. & WoLowski, J. (2007). Factors influencing parameters of laser ion sources. Laser Part. Beams 25, 199205.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Krása, J., Krouský, E., Pfeifer, M., Rohlena, K., Velyhan, A., Ullschmied, J., Gammino, S., Torrisi, L. K., Badziak, J., Parys, P., Rosinski, M., Ryć, L. & WoLowski, J. (2008 a). Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities. Laser Part. Beams 26, 555565.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Krása, J., Krouský, E., Margarone, D., Pfeifer, M., Rohlena, K., Ryć, L., Skála, J., Torrisi, L., Ullschmied, J. & Velyhan, A. (2008 b). Laser generation of Au-ions with charge states above 50 + . Rev. Sci. Instrum. 79, 02C 715.CrossRefGoogle ScholarPubMed
Láska, L., Cavallaro, C., Jungwirth, K., Krása, J., Krouský, E., Margarone, D., Mezzasalma, A., Pfeifer, M., Rohlena, K., Ryć, L., Skála, J., Torrisi, L., Ullschmied, J., Velyhan, A. & Verona-Rinati, G. (2008 c). Experimental studies of emission of highly charged Au-ions and of X-rays from the laser-produced plasma at high laser intensities. Eur. Phys. J.D. doi: 10.1190/epid/e2008-00226-8.Google Scholar
Mackinnon, A.J., Borghesi, M., Hatchett, S., Key, M.H., Patel, P.K., Campbell, H., Schiavi, A., Snavely, R., Wilks, S.C. & Willi, O. (2001). Effect of plasma scale length on multi-MeV proton production by intense laser pulse. Phys. Rev. Lett. 86, 17691772.CrossRefGoogle Scholar
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V.Yu. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 41084811.CrossRefGoogle ScholarPubMed
Malka, V., Faure, J., Fritzler, S., Manclossi, M., Guemnie-Tafo, A., d'Humieres, E., Lefebvre, E. & Batani, (2008). Production of energetic proton beams with lasers. Rev. Sci. Instrum. 77, 03B302.CrossRefGoogle Scholar
Margarone, D., Láska, L., Torrisi, L., Gammino, S., Krása, J., Krouský, E., Parys, P., Pfeifer, M., Rohlena, K., Rosinski, M., Ryc, L., Skála, J., Ullschmied, J., Velyhan, A. & WoLowski, J. (2008). Studies of craters dimension for long-pulse laser ablation of metal targets at various experimental conditions. Appl. Surf. Sci, 254, 27972803.CrossRefGoogle Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (1996). Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 39753978.CrossRefGoogle ScholarPubMed
Ryć, L., Badziak, J., Juha, L., Krása, J., Králiková, B., Láska, L., Parys, P., Pfeifer, M., Rohlena, K., Skála, J., Slysz, W., Ullschmied, J., Wegrzecki, M. & Wolowski, J. (2003). The use of silikon photodiodes for X-ray diagnostics in the PALS plasma experiments. Plasma Phys. Contr. Fusion 45, 10791086.Google Scholar
Tallents, G.J., Luther-Davies, B. & Horsburgh, M.A. (1986). EXAFS spectroscopy by continuum soft X-ray emission from a short pulse laser-produced plasma. Aust. J. Phys. 39, 253270.CrossRefGoogle Scholar
Torrisi, L., Gammino, S., Mezzasalma, A.M., Gentile, C., Krása, J., Láska, L., Rohlena, K., Badziak, J., Parys, P., Woryna, E. & Wolowski, J. (2003). Tantalum irradiation by high power pulsed laser at 1315 nm and 438 nm wavelengths. Appl. Surf. Sci. 220, 193202.CrossRefGoogle Scholar
Torrisi, L., Margarone, D., Láska, L., Krása, J., Velyhan, A., Pfeifer, M., Ullschmied, J. & Ryc, L. (2008a). Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams 26, 379387.CrossRefGoogle Scholar
Torrisi, L., Margarone, D., Láska, L., Verona-Rinati, G., Milani, E., Cavallaro, C., Ryc, L., Krása, J., Rohlena, K. & Ul lschmied, J. (2008b). Monocrystalline diamond detector for ionizing radiation emitted by high temperature laser generated plasma. J. Appl. Phys. 103, 083106.CrossRefGoogle Scholar
Ullschmied, J. (2006). Overview of laser plasma experiments at PALS. Proc. XXIX ECLIM, Madrid, p.5260.Google Scholar
Woryna, E., Parys, P., Wolowski, J. & Mróz, W. (1996). Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams 14, 293321.CrossRefGoogle Scholar