Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T20:46:43.806Z Has data issue: false hasContentIssue false

Experimental prospects at the Canadian advanced laser light source facility

Published online by Cambridge University Press:  06 March 2006

T. OZAKI
Affiliation:
Université du Québec, Institut National de la Recherche Scientifique, Varennes, Québec, Canada
J.-C. KIEFFER
Affiliation:
Université du Québec, Institut National de la Recherche Scientifique, Varennes, Québec, Canada
R. TOTH
Affiliation:
Université du Québec, Institut National de la Recherche Scientifique, Varennes, Québec, Canada
S. FOURMAUX
Affiliation:
Université du Québec, Institut National de la Recherche Scientifique, Varennes, Québec, Canada
H. BANDULET
Affiliation:
Université du Québec, Institut National de la Recherche Scientifique, Varennes, Québec, Canada

Abstract

We describe here the present status of the Advanced Laser Light Source (ALLS) facility, a state-of-the-art multi-beam Ti:sapphire laser system presently under construction in Canada. ALLS is a national user facility to be commissioned in 2005 at the INRS campus near Montreal. The 25 fs ALLS multi-beam laser system has three components, each with different repetition rate and output energy. These multiple laser beams will be used to generate a “rainbow” of femtosecond pulses from the far infrared to hard X-rays, which can be combined to perform unique experiments, such as dynamic molecular imaging. In this paper, we describe two examples of experiments that are planned by our group with the ALLS facility. The first is the highly efficient generation of high-order harmonics using ablation medium. We demonstrate the generation of up to the 53rd harmonics (λ = 15 nm) of a Ti:sapphire laser pulse (150 fs, 10 mJ), using pre-pulse (210 ps, 24 mJ) produced boron ablation as the nonlinear medium. The second example is the demonstration of in-line phase-contrast imaging with an ultrafast (300 fs) laser-based hard X-ray source (Mo K-α line). Images of biological samples have shown great enhancement of contrast due to this technique, distinguishing details that are barely observable or even undetectable in absorption images.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akiyama, Y., Midorikawa, K., Matsunawa, Y., Nagata, Y., Obara, M., Tashiro, H. & Toyoda, K. (1992). Generation of high-order harmonics using laser-produced rare-gas-like ions. Phys. Rev. Lett. 69, 21762179.Google Scholar
Altucci, C., Starczewski, T., Mevel, E., Wahlström, C.-G., Carré B., &L'Huillier, A. (1996). Influence of atomic density in high-order harmonic generation. J. Opt. Soc. B 13, 148156.Google Scholar
Backus, S., Bartels, R., Thompson, S., Dollinger, R., Kapteyn, H.C. & Murnane, M.M. (2001). High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system. Opt. Lett. 26, 465467.Google Scholar
Cerullo, G. & De Silvestri, S. (2003). Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 118.Google Scholar
Corkum, P. B. (1993). Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 19941997.Google Scholar
Flettner, A., Pfeifer, T., Walter, D., Winterfeldt, C., Spielmann, C. & Gerber, G. (2003). High-harmonic generation and plasma radiation from water microdroplets. Appl. Phys. B 77, 747751.Google Scholar
Ganeev, R.A., Redkorechev, V.I. & Usmanov, T. (1997). Optical harmonics generation in low-temperature laser-produced plasmas. Opt. Commun. 135, 251256.Google Scholar
Ganeev, R.A., Kanai, T., Ishizawa, A., Ozaki, T. & Kuroda, H. (2004). Development and applications of a compact hybrid tabletop terawatt chirped-pulse amplification Ti:sapphire-Nd:glass laser for X-ray lasing and harmonic generation. Appl. Opt. 43, 13961403.Google Scholar
Gavrilov, S.A., Golishnikov, D.M., Gordienko, V.M., Savel'ev, A.B. & Volkov, R.V. (2004). Efficient hard X-ray source using femtosecond plasma at solid targets with a modified surface. Laser Part. Beams 22, 301306.Google Scholar
Gureyev, T.E., Mayo, S., Wilkins, S., Paganin, D. & Stevenson A.W. (2001). Quantitative in-line phase contrast imaging with multienergy X-rays. Phys. Rev. Lett. 86, 58275830.Google Scholar
Keller, U. (1994). Ultrafast all-solid-state laser technology. Appl. Phys. B 58, 347363.Google Scholar
Kuroda, H., Suzuki, M., Ganeev, R., Zhang, J., Baba, M., Ozaki, T., Wei, Z.Y. & Zhang, H. (2005). Advanced 20 TW Ti : S laser system for X-ray laser and coherent XUV generation irradiated by ultra-high intensities. Laser Part. Beams 23, 183186.Google Scholar
Limpouch, J., Klimo, O., Bina, V. & Kawata, S. (2004). Numerical studies on the ultrashort pulse K-alpha emission sources based on femtosecond laser-target interactions. Laser Part. Beams 22, 147156.Google Scholar
Macklin, J.J., Kmetec, J.D. & Gordon, C.L., III (1993). High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766769.Google Scholar
Nisoli, M., Stagira, S., De Silvestri, S., Svelto, O., Sartania, S., Cheng, Z., Tempea, G., Spielmann, C. & Krausz, F. (1998). Toward a terawatt-scale sub-10-fs laser technology. IEEE J. Sel. Top. Quantum Electron. 4, 414420.Google Scholar
Norreys, P.A., Zepf, M., Moustaizis, S., Fews, A.P., Zhang, J., Lee, P., Bakarezos, M., Danson, C.N., Dyson, A., Gibbon, P., Loukakos, P., Neely, D., Walsh, F.N., Wark, J.S. & Dangor, A.E. (1996). Efficient extreme uv harmonics generated from picosecond laser pulse interactions with solid targets. Phys. Rev. Lett. 76, 18321835.Google Scholar
Pascolini, M., Poletto, L., Sansone, G., Stagira, S., Vozzi, C., Nisoli, M., Villoresi, P., Tondello, G. & De Silvestri, S. (2004). Toward the single-cycle regime in the generation of high-order laser harmonics. Laser Part. Beams 22, 335339.Google Scholar
Reintjes, J.F. (1984). Nonlinear Optical Parametric Processes In Liquids And Gases. New York: Academic.
Seres, E., Seres, J., Krausz, F., Spielmann, &C. (2004). Generation of coherent soft-X-ray radiation extending far beyond the titanium L edge. Phys. Rev. Lett. 92, 163002.Google Scholar
Spielmann, C., Burnett, N.H., Sartania, S., Schnürer, M., Kan, C., Lenzner, M., Wobrauschek, P. & Krausz, F. (1997). Generation of coherent X-rays in the water window using 5-femtosecond laser pulses. Science 278, 661664.Google Scholar
Toth, R., Kieffer, J.C., Fourmaux, S., Ozaki, T. & Krol, A. (2005). In line phase contrast imaging with a laser-based hard X-ray source. Rev. Sci. Instrum. 76, 083701.Google Scholar
Wilkins, S.W., Gureyev, T.E., Gao, D., Pogany A., &Stevenson, A.W. (1996). Phase contrast imaging using polychromatic hard X-rays. Nature 384, 335338.Google Scholar