Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T22:24:40.507Z Has data issue: false hasContentIssue false

Experimental evidence of the generation of multi-hundred megabar pressures in 0.26 μm wavelength laser experiments

Published online by Cambridge University Press:  09 March 2009

R. Fabbro
Affiliation:
Groupe de Recherches Coordonnées-Interaction Laser Matière, Ecole Polytechnique, 91128, Palaiseau Cédex, France
B. Faral
Affiliation:
Groupe de Recherches Coordonnées-Interaction Laser Matière, Ecole Polytechnique, 91128, Palaiseau Cédex, France
J. Virmont
Affiliation:
Groupe de Recherches Coordonnées-Interaction Laser Matière, Ecole Polytechnique, 91128, Palaiseau Cédex, France
H. Pepin
Affiliation:
Groupe de Recherches Coordonnées-Interaction Laser Matière, Ecole Polytechnique, 91128, Palaiseau Cédex, France
F. Cottet
Affiliation:
Groupe de Recherches Coordonnées-Interaction Laser Matière, Ecole Polytechnique, 91128, Palaiseau Cédex, France
J. P. Romain
Affiliation:
Groupe de Recherches Coordonnées-Interaction Laser Matière, Ecole Polytechnique, 91128, Palaiseau Cédex, France

Abstract

A 9 μm thick aluminium foil is accelerated to a velocity of about 160 km/s by a laser of 0.26 μm wavelength and intensity of 1015 W/cm2 and collides with an aluminium impact foil. The measurement of the velocity of the induced shock wave in the impact foil, using a step method at the rear of the impact foil, gives pressures in the multi-hundred megabar range. The dynamics and constraints of this shock wave are presented and the effect of X-ray preheating, which can be important at this laser wavelength, is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennet, B. I., Johnson, J. D., Kerley, G. I. & Rood, G. T. 1978 Los Alamos Nat. Laboratory report LA-7310.Google Scholar
Cottet, F., Fabbro, R., Romain, J. P. & Faral, B. 1984 Phys. Rev. Lett. 52, 1884.CrossRefGoogle Scholar
Fabbro, R., Faral, B., Cottet, F & Romain, J. P. 1984 J. Appl. Phys. 56, 3204.Google Scholar
Fabbro, R., Faral, B., Cottet, F., Romain, J. P. & Pepin, H. 1985 Phys. Fluids, 28, 3414.CrossRefGoogle Scholar
Grun, J., Obenschain, S. P., Ripin, B. H., Whitlock, R. R., McLean, E. A., Gardner, J., Herbst, H. J., Stamper, J. A. 1983 Phys. Fluids, 26, 588.CrossRefGoogle Scholar
Harrach, R. J. & Szoke, A. 1982 Univ. of California report No UCRL-86798-Rev.l (unpublished).Google Scholar
Pepin, H., Fabbro, R., Faral, B., Cottet, F. & Romain, J. P. 1985 Phys. Fluids, 28, 3393.CrossRefGoogle Scholar
Ragan, C. E. III 1980 Phys. Rev. A, 21, 458.Google Scholar
Ragan, C. E. III 1984 Phys. Rev. A, 29, 1391.CrossRefGoogle Scholar
Rosen, M. D., Phillion, D. W., Price, R. H., Cambell, E. M., Obenschain, S. P., Whitlock, R. R., McLean, E. A. & Ripin, B. H. 1983 Univ. of California report No UCRL-89750 (unpublished).Google Scholar
Schmalz, R. F., Herman, P. & Meyer-Ter-Vehn, J. 1983 16th European Conference on Laser Interaction with Matter,London (paper G5).Google Scholar
Shvarts, D., Jablon, C., Bernstein, I. B., Virmont, J. & Mora, P. 1979 Nucl. Fusion. 19, 1457.CrossRefGoogle Scholar
Trainor, R. J., Shaner, J. W., Averbach, J. M., Holmes, N. C. 1979 Phys. Rev. Lett. 42, 1154.Google Scholar
Veeser, L. R., Solem, J. C. 1978 Phys. Rev. Lett., 40, 1391.Google Scholar
Yaakobi, B., Boehly, T., Bourke, P., Conturie, Y., Craxton, R. S., Deletrez, J., Forsyth, J. M., Frankel, R. D., Goldman, L. M., McCrory, R. L., Richardson, M. C., SEKA, W., Schvarts, D. & Soures, J. M. 1981 Opt. Comm. 39, 176.CrossRefGoogle Scholar
Zeldovitch, Ya. B. & Raizer, Yu. P. 1967Physics of Shock Waves and High Temperature Hydrodynamic Phenomena”, Academic Press, New-York Vol. I and II.CrossRefGoogle Scholar