Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T14:54:12.307Z Has data issue: false hasContentIssue false

Excitation of an upper hybrid wave by a high power laser beam in plasma

Published online by Cambridge University Press:  01 April 2008

G. Purohit*
Affiliation:
Department of Physics, HNB Garhwal University, Srinagar, India
P.K. Chauhan
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
R.P. Sharma
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
*
Address correspondence and reprint requests to G. Purohit, Department of Physics, HNB Garhwal University, Srinagar (Garhwal), Uttarakhand-246174, India. E-mail: [email protected]

Abstract

In the present investigation, the excitation of an upper hybrid wave (UHW) in a hot collisionless magneto-plasma by a relativistic laser beam propagating perpendicular to the static magnetic field and having its electric vector polarized along the direction of the static magnetic field (ordinary mode) is presented. Due to nonuniform intensity distribution of pump laser, the background electron concentration is modified. The amplitude of the UHW, which depends on the background electron concentration, is thus nonlinearly coupled with the laser beam. The effect of nonlinear coupling between the pump laser and UHW is studied. The effect of the relativistic electron mass nonlinearity and the relativistic self-focusing of the pump laser on the excitation of the UHW have been incorporated. The dynamics of the excitation of the UHW in different power domains of the laser beam is accordingly modified. It has been seen that the effect of changing the strength of the static magnetic field on the nonlinear coupling and the dynamics of the excitation of the UHW is significant. The focusing behavior of the UHW may find its relevance in the heating of plasmas near the upper hybrid resonance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akamanov, S.A., Sukhorukov, A.P. & Khokhiov, R.V. (1968). Sov. Phys. Uspekhi 10, 609636.CrossRefGoogle Scholar
Bret, A. & Deutsch, C. (2006). Density gradient effects on beam plasma linear instabilities for fast ignition scenario. Laser Part. Beams 24, 269273.CrossRefGoogle Scholar
Bret, A., Firpo, M.C. & Deutsch, C. (2006). Between two stream and filamentation instabilities: Temperature and collisions effects. Laser Part. Beams 24, 2733.CrossRefGoogle Scholar
Bret, A., Firpo, M.C. & Deutsch, C. (2007). About the most unstable modes encountered in beam plasma interaction physics. Laser Part. Beams 25, 117119.CrossRefGoogle Scholar
Brueckner, K.A. & Jorna, S. (1974). Laser-driven fusion. Rev. Mod. Phys. 46, 325367.CrossRefGoogle Scholar
Cao, L.F., Uschmann, I., Zamponi, F., Kampfer, T., Fuhrmann, A., Forster, E., Holl, A., Redmer, R., Toleikis, S., Tschentscher, T. & Glenzer, S.H. (2007). Space-time characterization of laser plasma interactions in the warm dense matter regime. Laser Part. Beams 25, 239244.CrossRefGoogle Scholar
Fuchs, J. (1999). Experimental study of laser panetration in overdense plasma at relativistic intensities. Phys. Plasmas 6, 25632568.CrossRefGoogle Scholar
Gibbon, P. & Forster, E. (1996). Short pulse laser plasma interaction. Plasma Phys. Contr. Fusion 38, 769793.Google Scholar
Gill, T.S. & Saini, N.S. (2007). Nonlinear interaction of a rippled laser beam with an electrostatic upper hybrid wave in collisional plasma. Laser Part. Beams 25, 283293.Google Scholar
Gupta, D.N. & Suk, H. (2007). Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 3136.Google Scholar
Gupta, M.K., Sharma, R.P. & Mahmoud, S.T. (2007). Generation of plasma wave and third harmonic generation at ultra relativistic laser power. Laser Part. Beams 25, 211218.Google Scholar
Hora, H. (2006). Smoothing and stochastic pulsation at high power laser-plasma interaction. Laser Part. Beams 24, 455463.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Hung, N.T. (1975). Effect of the pump symmetry on the parametric excitation of transverse and longitudinal waves. Plasma Phys. 17, 633637.Google Scholar
Krall, N.A. & Trivelpiece, A.W. (1973). Principles of Plasma Physics. New York: McGraw Hill.CrossRefGoogle Scholar
Kruer, W.L. (1996). The Physics of Laser Plasma Interaction. Redwood, CA: Addison-Wesley Redwood.Google Scholar
Kruer, W.L. (2000). Interaction of plasmas with intense lasers. Phys. Plasmas 7, 22702278.CrossRefGoogle Scholar
Laska, L., Badziak, J., Gammino, S., Jungwirth, K., Kasperczuk, A., Krasa, J., Krousky, E., Kubes, P., Parys, P., Pfeifer, M., Pisarczyk, T., Rohlena, K., Rosinski, M., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J., Velyhan, A. & Wolowsk, J. (2007). The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams. Laser Part. Beams 25, 549556.CrossRefGoogle Scholar
Lee, K.F. (1974). Stimulated scattering of electromagnetic ordinary waves at upper hybrid frequency. Phys. Fluids 17, 12201223.Google Scholar
Malik, H.K. (2007). Oscillating two stream instability of a plasma wave in a negative ion containing plasma with hot and cold positive ions. Laser Part. Beams 25, 397406.Google Scholar
Manheimer, W. & Colombant, D. (2007). Effects of viscosity in modeling laser fusion implosions. Laser Part. Beams 25, 541547.CrossRefGoogle Scholar
Monot, P., Auduste, T., Gibbon, P. & Jakober, F. (1995). Experimental demonstration of relativistic self chenneling of a multiterawatt laser pulse in under dense plasma. Phys. Rev. Lett. 74, 29532956.Google Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Osman, F., Castillo, R. & Hora, H. (1999). Relativistic and ponderomotive self channeling at laser plasma interaction. J. Plasma Phys. 61, 263.CrossRefGoogle Scholar
Schuss, J.J. & Hosea, J.C. (1975). Mode conversion and harmonic generation at upper hybrid layer in toroidal plasmas. Phys. Fluids 18, 727734.Google Scholar
Seshadri, S.R. (1974). Parametrically excited instabilities near the hybrid resonant frequency. J. Appl. Phys. 45, 48244826.CrossRefGoogle Scholar
Sodha, M.S. & Tripathi, V.K. (1977). Laser Interaction and Related Plasma Phenomena. New York: Plenum.Google Scholar
Sodha, M.S., Tewari, D.P., Patheja, B.L. & Sharma, R.P. (1979). Excitation of an upper hybrid wave by a Gaussian electromagnetic beam in ordinary mode. J. Plasma Phys. 21, 267278.Google Scholar
Stix, T.H. (1965). Radiation and absorption via mode conversion in inhomogeneous collision-free plasma. Phys. Rev. Lett. 15, 878882.Google Scholar
Tanaka, K. A., Kodama, R., Fujita, H., Heya, M., Izumi, N., Kato, Y., Kitagawa, Y., Nima, K., Miyanaga, N., Norimatsu, T., Pukhov, A., Sunahara, A., Takahashi, K., Allen, M., Habara, H., Iwatani, T., Matusita, T., Miyakosi, T., Mori, M., Setoguchi, H., Sonomoto, T., Tanpo, M., Tohyama, S., Azuma, H., Kawasaki, T., Komeno, T., Maekawa, O., Matsuo, S., Shozaki, T., Suzuki, K.A., Yoshida, H. & Yamanaka, T. (2000). Studies of ultra-intense laser plasma interaction for fast ignition. Phys. Plasmas 7, 20142022.Google Scholar
Umstadter, D. (2003). Relativistic laser-plasma interactions. J. Phys. D 36, 151.Google Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.Google Scholar