Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T12:09:53.620Z Has data issue: false hasContentIssue false

Equation of state of condensed matter in laser-induced high-pressure regime

Published online by Cambridge University Press:  25 March 2004

B.K. GODWAL
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India
R.S. RAO
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India
A.K. VERMA
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India
M. SHUKLA
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India
H.C. PANT
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India
S.K. SIKKA
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India

Abstract

We have simulated the shock Hugoniot of copper and uranium based on the results of first principles electronic structure calculations. The room temperature isotherm has been obtained by evaluating the accurate ground state total energies at various compressions, and the thermal and electronic excitation contributions were obtained by adopting isotropic models using the results obtained by the band structure calculations. Our calculations ensure smooth consideration of pressure ionization effects as the relevant core states are treated in the semi-core form at the ambient pressure. The pressure variation of the electronic Grüneisen parameter was estimated for copper using the band structure results, which leads to good agreement of the simulated shock Hugoniot with the measured shock data. The simulation results obtained for U are also compared with the experimental data available in literature and with our own data.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batani, D., Balducci, A., Beretta, D., Bernardinello, A., Löwer, T., Koenig, M., Benuzzi, A., Faral, B. & Hall, T. (2000). Equation of state data for gold in the pressure range <10 TPa. Phys. Rev. B 61, 92879294.Google Scholar
Batani, D., Morelli, A., Tomasini, M., Benuzzi-Mounaix, A., Philippe, F., Koenig, M., Marchet, B., Masclet, I., Rabec, M., Reverdin, Ch., Cauble R., Celliers, P., Collins, G., Da Silva, L., Hall, T., Moret, M., Sacchi, B., Baclet, P., &Cathala, B. (2002). Equation of state data for iron at pressures beyond 10 Mbar. Phys. Rev. E 88, 235502 14.Google Scholar
Benuzzi, A., Löwer, T., Koenig, M., Faral, B., Batani, D., Beretta, D., Dawson, C. & Kepler, D. (1996). Indirect and direct laser driven shock waves and application to copper equation of state measurements in 10–40 Mbar pressure range. Phys. Rev. E 54, 21622165.Google Scholar
Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D. & Luitz, J. (2001). An augmented plane wave + local orbital program for calculating crystal properties. Wien, Austria: Technische Universität.
Car, R. & Parrinello, M. (1985). Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 24712474.Google Scholar
Cauble, R., Perry, T.S., Bach, D.R., Budil, K.S., Hammel, B.A., Collins, G.W., Gold, D.M., Dunn, J., Celliers, P., Da Silva, L.B., Foord, M.E., Wallace, R.J., Stewart, R.E. & Woolsey, N.C. (1998). Absolute equation-of-state data in the 10–40 Mbar (1–4 TPa) regime. Phys. Rev. Lett 80, 12481251.Google Scholar
Collins, J.G. & White, G.K. (1964). In Progress in Low Temperature Physics (Gorter, C.J., Ed.), Vol. IV. Amsterdam: North-Holland.
Ercolessi, F. & Adams, J. B. (1994). Interatomic potential from first-principle calculations: The force matching methods. Euro. Phys. Lett. 26, 583588.Google Scholar
Godwal, B.K., Sikka, S.K. & Chidambaram R. (1979). Electronic Grüneisen parameter in the shock Hugoniot equation of state of aluminum. Phys. Rev. B 20, 23622365.Google Scholar
Godwal, B.K., Sikka, S.K. & Chidambaram, R. (1981). Model for the equation of state of condensed matter in the “intermediate” pressure (about 0.5–10 TPa) region. Phys. Rev. Lett. 47, 11441147.Google Scholar
Godwal, B.K., Sikka, S.K. & Chidambaram, R. (1983). Equation of state theories of condensed matter up to about 10 GPa. Phys. Rep. 102, 121197.Google Scholar
Godwal, B.K. & Jeanloz, R. (1989). First-principles equation of state of gold. Phys. Rev. B 40, 75017507.Google Scholar
Godwal, B.K. & Jeanloz, R. (1990). Pressure-induced s → d transfer and the equation of state of molybdenum. Phys. Rev. B 41, 74407445.Google Scholar
Godwal, B.K. (1995). Condensed matter at ultra-high pressures. Curr. Sci. 68, 10871095.Google Scholar
Godwal, B.K., Meenakshi, S., Modak, P., Rao, R.S., Sikka, S.K., Vijayakumar, V., Bussetto, E. & Lausi, A. (2002). Evidence of a Lifshitz transition in the high-pressure behavior of the intermetallic compound AuIn2. Phys. Rev. B 65, 140101 14. [Rapid commun.].Google Scholar
Godwal, B.K., Modak, P. & Rao, R.S. (2003). On the high pressure electronic topological transitions in zinc. Solid State Commun. 125, 401405.Google Scholar
Heine, V. (1994). Ab initio simulation of complex processes in solids. Condens. Matter Phys. 16, 379385.Google Scholar
Hohenberg, P.C. & Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev. B 136, 864871.Google Scholar
Koenig, M., Faral, B., Bondenne, J.M., Batani, D., Benuzzi, A., Bossi, S., Remond, C., Perrine, J.P., Temporal, M. & Atzeni, S. (1995). Relative consistency of equation of state by laser driven shock waves. Phys. Rev. Lett. 74, 22602263.Google Scholar
Kohn, W. & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 11331138.Google Scholar
Marsh, S.P. (ed.). (1980). LASL Shock Hugoniot Data, Los Angeles: University of California Press.
McMahan, A.K. & Ross, M. (1977). High-temperature electron-band calculations. Phys. Rev. B 15, 718725.Google Scholar
Mermin, N.D. (1965). Thermal properties of the inhomogeneous electron gas. Phys. Rev. A 137, 14411443.Google Scholar
Mitchell, A.C., Nellis, W.J., Moriarty, J.A., Heinle, R.A., Holmes, N.C., Tipton, R.E. & Repp, G.W. (1991). Equation of state of Al, Cu, Mo and Pb at shock pressures up to 2.4 TPa (24 Mbar). J. Appl. Phys. 69, 29812986.Google Scholar
Narasimhan, S. & Gironcoli, S. (2002). Ab initio calculation of the thermal properties of Cu: Performance of the LDA and GGA. Phys. Rev. B 65, 064302 18.Google Scholar
Nellis, W.J., Moriarty, J.A., Mitchell, A.C., Ross, M., Dandrea, R.G., Ashcroft, N.W., Holmes, N.C. & Gathers, G.R. (1988). Metal physics at ultrahigh pressure: Al, Cu and lead as prototypes. Phys. Rev. Lett. 60, 14141417.Google Scholar
Pant, H.C., Shukla, M., Senecha, V.K., Bandyopadhyay, S., Rai, V.N., Khare, P., Bhat, R.K., Godwal, B.K. & Gupta, N.K. (2002). Equation of state studies using laser driven shock wave propagation through layered foil targets. Curr. Sci. 82, 149157.Google Scholar
Perdew, J.P., Burke, K. & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868.Google Scholar
Perdew, J.P., Kurth, S., Zupan, A. & Blaha, P. (1999). Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation. Phys. Rev. Lett. 82, 25442547.Google Scholar
Pickett, W.E., Freeman, A.J., & Koelling, D.D. (1980). Self-consistent linearized augmented-plane-wave study of the electronic structure and superconductivity of fcc lanthanum under pressure. Phys. Rev. B 22, 26952715.Google Scholar
Ragan, C.E., III (1982). Shock compression measurements at 1 to 7 TPa. Phys. Rev. A 25, 33603375.Google Scholar
Rai, V.N., Shukla, M., Pant, H.C. & Bhawalkar, D.D. (1995). Development of picosecond time resolution optical and X-ray streak cameras. Sadhana 20, 937954.Google Scholar
Rao, R.S., Godwal, B.K. & Sikka, S.K. (1992). Thorium: A 5f-band metal at ultrahigh pressures. Phys. Rev. B 46, 57805782.Google Scholar
Rao, R.S., Godwal, B.K., Sikka, S.K. & Chidambaram, R. (1994). Occupancy of central sites in the Zn49Mg32 quasicrystal from total-energy computations on its crystal approximant. Phys. Rev. B 50, 1563215635.Google Scholar
Rao, R.S., Modak, P., Godwal, B.K. & Sikka, S.K. (1999). Stability of the pressure-induced orthorhombic phase of iron. Phys. Rev. B 59, 1349813500.Google Scholar
Ross, M. & Young, D.A. (1993). Theory of equation of state at high pressure. Annu. Rev. Phys. Chem. 44, 6187.Google Scholar
Rothman, S.D., Evans, A.M., Harsfield, C.J., Graham, P. & Thomes, B.R. (2002). Impedance match equation of state experiments using indirectly laser driven multimegabar shocks. Phys. Plasmas 9, 17211733.Google Scholar
Struzhkin, V.V., Timofeev, Y.A., Hemley, R.J. & Mao, H. (1997). Superconducting Tc and electron-phonon coupling in Nb to 132 GPa: Magnetic susceptibility at megabar pressures. Phys. Rev. Lett. 79, 42624265.Google Scholar
T-4 Group (1983). SESAME report on the Los Alamos Equation-of-State Library, LANL Report No.LALP-83-4. Los Alamos, NM: Los Alamos National Laboratory.
Vladimirov, A.S., Voloshin, N.P., Nogin, V.N., Petrovtsev, A.V. & Simonenko, V.A. (1984). Shock compressibility of aluminum at P ≥ 1 Gbar. JETP Lett. 39, 8285.Google Scholar
Wang, Y., Chen, D. & Zhang, X. (2000). Calculated equation of state of Al, Cu, Ta, Mo, and W to 1000 GPa. Phys. Rev. Lett. 84, 32203223.Google Scholar
Zel'dovich, Ya.B. & Raizer, YuP. (1976). Physics of shock waves and high temperature hydrodynamics phenomena, vol. 1 and 2. New York: Academic Press.