Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T23:47:53.987Z Has data issue: false hasContentIssue false

Equation of state and the phase diagram of dense fluid helium in the region of partial ionization

Published online by Cambridge University Press:  09 March 2009

Andreas Förster
Affiliation:
Institut für Theoretische Physik, Humboldt-Universität zu Berlin, Invalidenstrasse 110, D-1040 Berlin, Germany
Torsten Kahlbaum
Affiliation:
Zentralinstitut für Elektronenphysik, Hausvogteiplatz 5–7, D-1086 Berlin, Germany
Werner Ebeling
Affiliation:
Institut für Theoretische Physik, Humboldt-Universität zu Berlin, Invalidenstrasse 110, D-1040 Berlin, Germany

Abstract

The plasma composition, equation of state, and phase diagram of dense helium plasma were calculated for temperatures of 104...105 K, total atom densities of 1015... 1025 cm−3, and pressures up to 102 TPa, including the region of partial ionization and strong Coulomb coupling. The basic thermodynamic potential was chosen to be the free energy density with contributions due to Coulomb interaction, hard-core repulsion, and van der Waals-like attraction for a mixture of differently charged atoms and free electrons. For the first time, we show the potential occurrence of a sequence of plasma phase transitions. In helium, they correspond to the ionization steps He0→He+ and He+→He++ respectively. The properties of the coexisting phases were determined by a Maxwell construction based on the combined chemical potential.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barker, J.A. & Henderson, D. 1967 J. Chem. Phys. 47, 4714.CrossRefGoogle Scholar
Carnahan, N.F. & Starijng, K.E. 1969 J. Chem. Phys. 51, 635.CrossRefGoogle Scholar
Crawford, R.K. 1975 in: Rare Gas Solids, Klein, M.L. and Koehler, T.R. eds. (Academic Press, New York), vol. 1, chap. 11.Google Scholar
De Witt, H.E. 1976 Phys. Rev. 14, 1290.Google Scholar
Denemann, H. et al. 1980 Ann. Physik (Leipzig) 37, 444.CrossRefGoogle Scholar
Ebeling, W. 1989a Contrib. Plasma Phys. 29, 165.Google Scholar
Ebeling, W. 1989b in: Inside the Sun, Berthomieu, G. and Cribier, M. eds. (Kluwer Academic Publisher, Dordrecht), p. 43.Google Scholar
Ebeling, W. 1990 Contrib. Plasma Phys. 30, 553.Google Scholar
Ebeling, W. & Förster, A. 1990 High Press. Res. 4, 484.Google Scholar
Ebeling, W. & Richert, W. 1985a Phys. Lett. A 108, 80.CrossRefGoogle Scholar
Ebeling, W. & Richert, W. 1985b Contrib. Plasma Phys. 25, 431.CrossRefGoogle Scholar
Ebeling, W. & Sändig, R. 1973 Ann. Physik (Leipzig) 28, 289.Google Scholar
Ebeling, W. et al. 1976 Theory of Bound States and Ionization Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin); 1979 extended edition in Russian (Mir Publishers, Moscow).Google Scholar
Ebeling, W. et al. 1988 Physica 150, 159.Google Scholar
Förster, A. et al. 1991a High Press. Res., 7, 375.Google Scholar
Förster, A. et al. 1991b Suppl. to Z. Physik D 21, S171.CrossRefGoogle Scholar
Franck, S. 1980 Ann. Physik (Leipzig) 37, 349.Google Scholar
Franck, J.P. & Daniels, W.B. 1980 Phys. Rev. Lett. 44, 259.CrossRefGoogle Scholar
Galam, S. & Hansen, J.P. 1976 Phys. Rev. 14, 816.CrossRefGoogle Scholar
Gell-Mann, M. & Brueckner, K.A. 1957 Phys. Rev. 106, 364.Google Scholar
Grigorev, F.V. et al. 1972 Zh. Eksp. Teor. Fiz. Pis. Red. (USSR) 16, 286; 1972 Sov. Phys. JETP Lett. 16, 201 (English).Google Scholar
Haronska, P. et al. 1987 Wiss. Z. Wilhelm-Pieck-Univ. Rostock (CDR), N-Reihe 36, 98.Google Scholar
Hess, H. 1989 High Press. Res. 1, 203.Google Scholar
Hess, H. 1990 in: Strongly Coupled Plasma Physics, Ichimaru, S. ed. (North-Holland, Amsterdam), p. 483.Google Scholar
Jeffries, C.D. & Keldysh, L.V., eds. 1983 Electron-Hole Droplets in Semiconductors (North-Holland, Amsterdam).Google Scholar
Kahlbaum, T. & Forster, A. 1990 Laser Part. Beam. 8, 753.CrossRefGoogle Scholar
Kahlbaum, T. & Hess, H. 1988 in: High Pressure Geosciences and Material Synthesis, Vollstädt, H. ed. (Akademie-Verlag, Berlin), p. 90.Google Scholar
Landau, L.D. & Zeldovich, Ya.B. 1943 Acta Physicochim. U.R.S.S. 18, 194.Google Scholar
Lebowitz, J.L. & Rowlinson, J.S. 1964 J. Chem. Phys. 41, 133.Google Scholar
ger, D. & Deutsch, C. 1988 Phys. Rev. 37, 4916.Google Scholar
Loubeyre, P. et al. 1982 Phys. Rev. Lett. 49, 1172.Google Scholar
Mansoori, G.A. et al. 1971 J. Chem. Phys. 54, 1523.Google Scholar
Marley, M.S. & Hubbard, W.B. 1988 Icaru. 73, 536.Google Scholar
Meyer-Ter-Vehn, J. & Zittel, W. 1988 Phys. Rev. 37, 8674.Google Scholar
Moore, Ch.E. 1971 Atomic Energy Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 35/V.I (National Bureau of Standards, Washington, DC), p. 4.Google Scholar
Nellis, W.J. et al. 1984 Phys. Rev. Lett. 53, 1248.Google Scholar
Radousky, H.B. et al. 1986 Phys. Rev. Lett. 57, 2419.Google Scholar
Robnk, M. & Kundt, W. 1983 Astron. Astrophys. 120, 227.Google Scholar
Rosenfeld, Y. 1982 Phys. Rev. 26, 3622.Google Scholar
Saumon, D. & Chabrter, G. 1989 Phys. Rev. Lett. 62, 2397.Google Scholar
Valuev, A.A. et al. 1970 Zh. Eksp. Teor. Fiz. (USSR) 59, 2228; 1971 Sov. Phys. JETP 32, 1205 (English).Google Scholar
Van Horn, H.M. 1990 in: Strongly Coupled Plasma Physics, Ichimaru, S. ed. (North-Holland, Amsterdam), p. 3.Google Scholar
Vargaftk, N.B. 1972 Reference Book on Thermophysical Properties of Gases and Liquids (in Russian), 2nd ed. (Nauka Publishers, Moscow), p. 521.Google Scholar
Young, D.A. et al. 1981 Phys. Rev. 24, 5119.Google Scholar
Ztmmermann, R. 1988 Many-Particle Theory of Highly Excited Semiconductors (Teubner, Leipzig).Google Scholar