Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T13:05:52.320Z Has data issue: false hasContentIssue false

Enhanced ion acceleration by collisionless electrostatic shock in thin foils irradiated by ultraintense laser pulse

Published online by Cambridge University Press:  22 April 2009

M.-P. Liu
Affiliation:
Key Laboratory of Beam Technology and Materials, Modification of the Ministry of Education, Beijing Normal University, Beijing, People's Republic of China
B.-S. Xie*
Affiliation:
Key Laboratory of Beam Technology and Materials, Modification of the Ministry of Education, Beijing Normal University, Beijing, People's Republic of China College of Nuclear Science and technology, Beijing Normal University, Beijing, People's Republic of China Beijing Radiation Center, Beijing, People's Republic of China
Y.-S. Huang
Affiliation:
Department of Engineering Physics, Tsinghua University, Beijing, People's Republic of China
J. Liu
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
M.Y. Yu
Affiliation:
Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou, People's Republic of China Institut für Theoretische Physik I, Ruhr-Universität Bochum, Bochum, Germany
*
Address correspondence and reprint requests to: Bai-Song Xie, College of Nuclear Science and technology, Beijing Normal University, Beijing 100875, People's Republic of China. E-mail: [email protected]

Abstract

The formation of collisionless electrostatic shock (CES) and ion acceleration in thin foils irradiated by intense laser pulse is investigated using particle-in-cell simulation. The CES can appear in the expanding plasma behind the foil when self-induced transparency occurs. The transmitting laser pulse can expel target-interior electrons, in addition to the electrons from the front target surface. The additional hot electrons lead to an enhanced and spatially-extended sheath field behind the foil. As the CES propagates in the plasma, it also continuously forward-reflects many of the upstream ions to higher energies. The latter ions are further accelerated by the enhanced sheath field and can overtake and shield the target-normal sheath accelerated ions. The energy gain of the CES accelerated ions can thus be considerably higher than that of the latter.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J., Gãlowacz, S., Jabãloński, S., Parys, P., WoŁowski, J. & Hora, H. (2005). Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.CrossRefGoogle Scholar
Brambrink, E., Roth, M., Blazevic, A. & Schlegel, T. (2006). Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part. Beams 24, 163168.CrossRefGoogle Scholar
Chen, M., Sheng, Z.M., Dong, Q.L., He, M.Q., Li, Y.T., Bari, M.A. & Zhang, J. (2007). Collisionless electrostatic shock generation and ion acceleration by ultraintense laser pulses in overdense plasmas. Phys. Plasmas 14, 053102.CrossRefGoogle Scholar
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernández, J., Gauthier, J.C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Lesage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pépin, H. & Renard-Legalloudec, N. (2004). Ultralow Emittance, Multi-MeV Proton Beams from a Laser Virtual-Cathode Plasma Accelerator. Phys. Rev. Lett. 92, 204801.CrossRefGoogle ScholarPubMed
Denavit, J. (1992). Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69, 3052.Google Scholar
Desai, T., Dezulian, R. & Batani, D. (2007). Radiation e®ects on shock propagation in Al target relevant to equation of state measurements. Laser Part. Beams 25, 2330.CrossRefGoogle Scholar
D'humières, E., Lefebvre, E., Gremillet, L. & Malka, V. (2005). Proton acceleration mechanisms in high-intensity laser interaction with thin foils. Phys. Plasmas 12, 062704.CrossRefGoogle Scholar
Eliezer, S., Murakaml, M. & Val, J.M.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.Google Scholar
Forslund, D.W. & Shonk, C.R. (1970). Formation and structure of electrostatic collisionless shock. Phys. Rev. Lett. 25, 16991702.CrossRefGoogle Scholar
Forslund, D.W. & Freidberg, J.P. (1971). Theory of laminar collisionless shocks. Phys. Rev. Lett. 27, 11891192.CrossRefGoogle Scholar
He, M.Q., Dong, Q.L., Sheng, Z.M., Weng, S.M., Chen, M., Wu, H.C. & Zhang, J. (2007). Acceleration dynamics of ions in shocks and solitary waves driven by intense laser pulses. Phys. Rev. E. 76, 035402.Google Scholar
Hora, H. (2007). New aspects for fusion energy using inertial con̄nement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Huang, Y., Lan, X., Duan, X., Tan, Z., Wang, N., Shi, Y., Tang, X. & He, Y. (2007). Hot-electron recirculation in ultraintense laser pulse interactions with thin foils. Phys. Plasmas 14, 103106.Google Scholar
Huang, Y., Duan, X., Lan, X., Tan, Z., Wang, N., Tang, X. & He, Y. (2008). Time-dependent neutral-plasma isothermal expansions into a vacuum. Laser Part. Beams 26, 671675.CrossRefGoogle Scholar
Kaw, P. & Dawson, J. (1970). Relativistic nonlinear propagation of laser beams in cold overdense plasmas. Phys. Fluids 13, 472481.Google Scholar
Kruer, W.L. & Estabrook, K. (1985). J £ B heating by very intense laser light. Phys. Fluids 28, 430432.Google Scholar
Lebo, I.G., Lebo, A.I., Batani, D., Dezulian, R., Benocci, R., Jafer, R. & Krousky, E. (2008). Simulations of shock generation and propagation in laser-plasmas. Laser Part. Beams 26, 179C188.CrossRefGoogle Scholar
Lefebvre, E. & Bonnaud, G. (1995). Transparency/Opacity of a solid target illuminated by an ultrahigh-intensity laser pulse. Phys. Rev. Lett. 74, 20022005.CrossRefGoogle ScholarPubMed
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Yu. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225C234.Google Scholar
Liu, M.P., Wu, H.C., Xie, B.S., Liu, J., Wang, H.Y. & Yu, M.Y. (2008). Energetic collimated ion bunch generation from an ultraintense laser interacting with thin concave targets. Phys. Plasmas 15, 063104.Google Scholar
Mackinnon, A.J., Sentoku, Y., Patel, P.K., Price, D.W., Hatchett, S., Key, M.H., Andersen, C., Snavely, R. & Freeman, R.R. (2002). Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett. 88, 215006.CrossRefGoogle ScholarPubMed
Mackinnon, A.J., Patel, P.K., Borghesi, M., Clarke, R.C., Freeman, R.R., Habara, H., Hatchett, S.P., Hey, D., Hicks, D.G., Kar, S., Key, M.H., King, J.A., Lancaster, K., Neely, D., Nikkro, A., Norreys, P.A., Notley, M.M., Phillips, T.W., Romagnani, L., Snavely, R.A., Stephens, R.B. & Town, R.P.J. (2006). Proton radiography of a laser-driven implosion. Phys. Rev. Lett. 97, 045001.Google Scholar
Mckenna, P., Carroll, D.C., Lundh, O., Näurnberg, F., Markey, K., Bandyopadhyay, S., Batani, D., Evans, R.G., Jafer, R., Kar, S., Neely, D., Pepler, D., Quinn, M.N., Redaelli, R., Roth, M., Wahlsträom, C.-G., Yuan, X.H. & Zepf, M. (2008). E®ects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets. Laser Part. Beams 26, 591596.Google Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnäuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.Google Scholar
Nieter, C. & Cray, J.R. (2004). VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196, 448473.Google Scholar
Romagnani, L., Bulanov, S.V., Borghesi, M., Audebert, P., Gauthier, J.C., Läowenbräuck, K., Mackinnon, A.J., Patel, P., Pretzler, G., Toncian, T. & Willi, O. (2008). Observation of collisionless shocks in laser-plasma experiments. Phys. Rev. Lett. 101, 025004.CrossRefGoogle ScholarPubMed
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Santala, M.I.K., Zepf, M., Beg, F.N., Clark, E.L., Dangor, A.E., Krushelnick, K., Tatarakis, M., Watts, I., Ledingham, K.W.D., Mccanny, T., Spengcer, I., Machacek, A.C., Allott, R., Clarke, R.J. & Norreys, P.A. (2001). Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions. Appl. Phys. Lett. 78, 1921.Google Scholar
Silva, L.O., Marti, M., Davies, J.R., Fonseca, R.A., Ren, C., Tsung, F.S. & Mori, W.B. (2004). Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 92, 015002.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle ScholarPubMed
Sorasio, G., Marti, M., Fonseca, R. & Silva, L.O. (2006). Very high mach-number electrostatic shocks in collisionless plasmas. Phys. Rev. Lett. 96, 045005.CrossRefGoogle ScholarPubMed
Wei, M.S., Manglez, S.P.D., Najmudin, Z., Walton, B., Gopal, A., Tatarakis, M., Dangor, A.E., Clark, E.L., Evans, R.G., Fritzler, S., Clarke, R.J., Hernandez-Gomez, C., Neely, D., Mori, W., Tzoufras, M. & Krushelnick, K. (2004). Ion acceleration by collisionless shocks in high-intensity-laser Cunderdense-plasma interaction. Phys. Rev. Lett. 93, 155003.CrossRefGoogle ScholarPubMed
Winterberg, F. (2008). Lasers for inertial confinement fusion driven by high explosives. Laser Part. Beams 26, 127135.Google Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.Google Scholar
Zhidkov, A., Uesaka, M., Sasaki, A. & Daido, H. (2002). Ion acceleration in a solitary wave by an intense picosecond laser pulse. Phys. Rev. Lett. 89, 215002.CrossRefGoogle Scholar