Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T18:17:36.971Z Has data issue: false hasContentIssue false

Energy dissipation in insulators induced by swift heavy ions: A parameter study

Published online by Cambridge University Press:  27 April 2010

O. Osmani
Affiliation:
Department of Physics, University of Duisburg-Essen, Duisburg, Germany Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern, Germany
H. Lebius
Affiliation:
CIMAP (CEA-CNRS-ENSICAEN-UCBN), Caen Cedex, France
B. Rethfeld*
Affiliation:
Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern, Germany
M. Schleberger
Affiliation:
Department of Physics, University of Duisburg-Essen, Duisburg, Germany
*
Address correspondence and reprint requests to: B. Rethfeld, Department of Physics, University of Kaiserslautern and Research Center OPTIMAS, D-67653 Kaiserslautern, Germany. E-mail: [email protected]

Abstract

The irradiation of solids with high energy laser or particle beams has led to a deeper understanding of the relaxation processes inside the target material. However, a lot of open questions remain. In the present paper, we will examine the irradiation of the model system Xe23+ @ 93 MeV → SrTiO3 within the framework of the two-temperature-model and study the electron-phonon-coupling g and the electron diffusivity De as well as the lattice diffusivity Dp. These are crucial parameters for which no experimental data is available. Experimentally, g is very difficult to measure and therefore theoretical predictions are of great importance. With the approach presented here it is possible to determine the coupling-constant by one order of magnitude.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akcöltekin, E., Peters, T., Meyer, R., Duvenbeck, A., Klusmann, M., Monnet, I., Lebius, H. & Schleberger, M. (2007). Creation of multiple nanodots by single ions. Nat Nano 2, 290294.CrossRefGoogle ScholarPubMed
Akcöltekin, E., Akcöltekin, S., Osmani, O., Duvenbeck, A., Lebius, H., & Schleberger, M. (2008). Swift heavy ion irradiation of SrTiO3 under grazing incidence. New J. Phys. 10, 053007.CrossRefGoogle Scholar
Anisimov, Kapeliovich P. (1974). Electron-emission from surface of metals induced by ultrashort laser pulses. Sov. Phys. JETP 39, 375.Google Scholar
Baranov, I.A., Martynenko, Y.V., Tsepelevich, S.O. & Yavlinski, Y.N. (1988). Inelastic sputtering of solids by ions. Soviet Phys. Uspekhi 31, 1015–034.CrossRefGoogle Scholar
Borghesi, M., Audebert, P., Bulanov, S., Cowan, T., Fuchs, J., Gauthier, J., Mackinnon, A., Patel, P., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven probes. Laser Part. Beams 23, 291295.CrossRefGoogle Scholar
de Ligny, D. & Richet, P. (1996). High-temperature heat capacity and thermal expansion of srtio3 and srzro3 perovskites. Phys. Rev. B 53, 30133022.CrossRefGoogle Scholar
Hohlfeld, J., Wellershoff, S.S., Gdde, J., Conrad, U., Jhnke, V. & Matthias, E. (2000). Electron and lattice dynamics following optical excitation of metals. Chem. Phys., 251, 237258.CrossRefGoogle Scholar
Itoh, M., Wang, R., Inaguma, Y., Yamaguchi, T., Shan, Y.-J. & Nakamura, T. (1999). Ferroelectricity induced by the oxygen isotope exchange in strontium titanate perovskite. Phys. Rev. Lett. 82, 35403543.CrossRefGoogle Scholar
Ivanov, D.S. & Zhigilei, L.V. (2009). The effect of pulse duration on the interplay of electron heat conduction and electron-phonon interaction: Photo-mechanical versus photo-thermal damage of metal targets. Appl. Surf. Sci. 255, 9724.CrossRefGoogle Scholar
Klemens, P.G. (1960). Thermal resistance due to point defects at high temperature. Phys. Rev. 119, 507509.CrossRefGoogle Scholar
Lin, Z., Zhigilei, L.V. & Celli, V. (2008). Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133/1–17.CrossRefGoogle Scholar
Lindhard, J. & Scharff, M. (1961). Energy dissipation by ions in the kev region. Phys. Rev. 124, 128130.CrossRefGoogle Scholar
Lisowski, M., Loukakos, U., Bovensiepen, P.A., Stahler, J., Gahl, C. & Wolf, M. (2004). Ultrafast dynamics of electron thermalization, cooling and transport effects in ru(001). Appl. Phys. A 78, 165.CrossRefGoogle Scholar
Lorazo, P., Lewis, L.J. & Meunier, M. (2006). Thermodynamic path-ways to melting, ablation, and solidification in absorbing solids under pu. Phys. Rev. B 73, 134108/1–22.CrossRefGoogle Scholar
Meftah, A., Costantini, J., Khalfaoui, N., Boudjadar, S., Stoquert, J., Studer, F. & Toulemonde, M. (2005). Experimental determination of track cross-section in Gd3Ga5O12 and comparison to the inelastic thermal spike model applied to several materials. Nucl. Instr. Meth. B 237, 563574.CrossRefGoogle Scholar
Osmani, O., Duvenbeck, A., Akcöltekin, E., Meyer, R., Lebius, H. & Schleberger, M. (2008). Calculation of electronic stopping power along glancing swift heavy ion tracks in perovskites using ab initio electron density data. J. Phys. Cond. Mat., 20, 315001 (5pp).CrossRefGoogle Scholar
Rosmej, O.N., Pikuz, S., Korostiy, S., Blaszevic, A., Brambrink, E., Fertman, A., Mutin, T., Shevelko, V., Efremov, V., Pikuz, T., Faenov, A., Loboda, P., Golubev, A. & Hoffmann, D. (2005). Radiation dynamics of fast heavy ions interacting with matter. Laser Part. Beams 23, 396–396.CrossRefGoogle Scholar
Schiwietz, G., Xiao, G., Grande, P.L., Luderer, E., Pazirandeh, R. & Stettner, U. (1999). Determination of the electron temperature in the thermal spike of amorphous carbon. Europhys. Lett. 47, 384390.CrossRefGoogle Scholar
Seitz, F. & Köhler, J. (1956). Displacement of atoms during irradiation. Solid State Phys. 2, 305.Google Scholar
Strangio, C., Caruso, A., Neely, D., Andreoli, P., Anzaloner, R., Clarker, R., Cristofari, G., Del Prete, E., Di Giorgio, G., Muhrphy, C., Ricci, C, Stevens, R. & Tolley, M. (2007). Production of multi-mev per nucleon ions in the controlled amount of matter mode (cam) by using causally isolated targets. Laser Part. Beams 25, 8591.CrossRefGoogle Scholar
Toulemonde, M., Dufour, C. & Paumier, E. (1992). Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors. Phys. Rev. B 46, 1436214369.CrossRefGoogle ScholarPubMed