Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T19:57:00.330Z Has data issue: false hasContentIssue false

Electron sheath dynamic in the laser–foil interaction

Published online by Cambridge University Press:  20 June 2016

S. Mirzanejhad*
Affiliation:
Faculty of basic science, Atomic and Molecular Physics Department, University of Mazandaran, P. O. Box 47415-416, Babolsar, Iran
J. Babaei
Affiliation:
Faculty of basic science, Atomic and Molecular Physics Department, University of Mazandaran, P. O. Box 47415-416, Babolsar, Iran
R. Nasrollahpour
Affiliation:
Faculty of basic science, Atomic and Molecular Physics Department, University of Mazandaran, P. O. Box 47415-416, Babolsar, Iran
*
Address correspondence and reprint requests to: S. Mirzanejhad, Faculty of basic science, Atomic and Molecular Physics Department, University of Mazandaran, P. O. Box 47415-416, Babolsar, Iran. E-mail: [email protected]

Abstract

In the interaction of ultra-short and ultra-intense high contrast laser pulse with a dense foil, accelerating electron sheath is formed. The dynamic of this sheath is obtained according to the ponderomotive force of the laser pulse and restoring electrostatic force of the stationary heavy ions. In the transient dynamics, maximum electron sheath displacement is obtained for different interaction parameters. This maximum displacement has an important effect in the explanation of the electron blow out condition. It is shown numerically that the electron sheath maximum displacement increases with increasing laser pulse amplitude or decreasing its rise time, or by decreasing plasma electron density. Recently, backward MeV acceleration of electrons in the interaction of intense laser pulse with solid targets was observed. The ponderomotive force of the compressed reflected laser pulse includes in our formalism and is used for explanation of the electron's backward acceleration. The threshold values of the interaction parameters for the occurrence of this phenomenon are considered. The electron blow out condition and backward acceleration are accompanied with numerical modeling and 1D3V, particle-in-cell simulation code.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauer, D., Mulser, P. & Steeb, W. (1995). Relativistic ponderomotive force, Uphill acceleration, and transition to chaos. Phys. Rev. Lett. 75, 4622.Google Scholar
Daido, H., Nishiuchi, M. & Pirozhkov, A.S. (2012). Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401.Google Scholar
Eliezer, S., Nissim, N., Martinez-val, J.M., Mima, K. & Hora, H. (2014). Double layer acceleration by laser radiation. Laser Part. Beams 32, 211.Google Scholar
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229.Google Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, mono-energetic ions and new acceleration mechanisms. Laser Part. Beams 25, 3.Google Scholar
Habs, D., Hegelich, M., Schreiber, J., Gross, M., Henig, A., Kiefer, D. & Jung, D. (2008). Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and gamma-ray beams. Appl. Phys. B 93, 349.Google Scholar
Kiefer, D., Henig, A., Jung, D., Gautier, D.C., Flippo, K.A., Gaillard, S.A., Letzring, S., Johnson, R.P., Shah, R.C., Shimada, T., Fernández, J.C., Liechtenstein, V.Kh., Schreiber, J., Hegelich, B.M. & Habs, D. (2009). First observation of quasi-monoenergetic electron bunches driven out of ultra-thin diamond-like carbon (DLC) foils. Eur. Phys. J. D 55, 427.Google Scholar
Kiefer, D., Yeung, M., Dzelzainis, T., Foster, P.S., Rykovanov, S.G., Lewis, C.L.S., Marjoribanks, R.S., Ruhl, H., Habs, D., Schreiber, J., Zepf, M. & Dromey, B. (2013). Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet. Nat. Commun. 4, 2775.Google Scholar
Kulagin, V.V., Cherepenin, V.A. & Suk, H. (2004). Compression and acceleration of dense electron bunches by ultraintense laser pulses with sharp rising edge. Phys. Plasmas 11, 5239.Google Scholar
Liu, F. & Willi, O. (2012). Ultrashort x-ray pulse generation by nonlinear Thomson scattering of a relativistic electron with an intense circularly polarized laser pulse. Phys. Rev. ST Accel. Beams 15, 070702.Google Scholar
Macchi, A., Borghesi, M. & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751.Google Scholar
Macchi, A., Veghini, S., Liseykina, T.V. & Pegoraro, F. (2010). Radiation pressure acceleration of ultrathin foils. New J. Phys. 12, 045013.Google Scholar
Mirzanejhad, S., Sohbatzadeh, F., Joulaei, A., Babaei, J. & Shahabei, K. (2015). Optimization of laser acceleration of protons from mixed structure nanotarget. Laser Part. Beams 33, 339.CrossRefGoogle Scholar
Orban, C., Morrison, J.T., Chowdhury, E.A., Nees, J.A., Frische, A.K., Feister, S. & Roquemore, W.M. (2015). Backward-propagating MeV electrons in ultra-intense laser interactions: Standing wave acceleration and coupling to the reflected laser pulse. Phys. Plasmas 5, 2727.Google Scholar
Paz, A., Kuschel, S., Rodel, C., Schnell, M., Jackel, O., Kaluza, M.C. & Paulus, G.G. (2012). Thomson backscattering from laser-generated, relativistically moving high-density electron layers. New J. Phys. 14, 093018.CrossRefGoogle Scholar
Wang, W.P., Shen, B.F., Zhang, X.M., Ji, L.L., Yu, Y.H., Yi, L.Q., Wang, X.F. & Xu, Z.Z. (2012). Dynamic study of a compressed electron layer during the hole-boring stage in a sharp-front laser interaction region. Phys. Rev. ST Accel. Beams 15, 081302.Google Scholar