Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T02:21:07.709Z Has data issue: false hasContentIssue false

Electron plasma wave excitation by beating of two q-Gaussian laser beams in collisionless plasma

Published online by Cambridge University Press:  18 February 2016

Arvinder Singh*
Affiliation:
Department of Physics, National Institute of Technology Jalandhar, Jalandhar, Punjab, India
Naveen Gupta*
Affiliation:
Department of Physics, National Institute of Technology Jalandhar, Jalandhar, Punjab, India
*
Address correspondence and reprint requests to: Arvinder Singh, Department of Physics, National Institute of Technology Jalandhar, Jalandhar, Punjab, India. E-mail: [email protected] and [email protected]
Address correspondence and reprint requests to: Arvinder Singh, Department of Physics, National Institute of Technology Jalandhar, Jalandhar, Punjab, India. E-mail: [email protected] and [email protected]

Abstract

This paper presents a scheme for excitation of an electron-plasma wave (EPW) by beating two q-Gaussian laser beams in an underdense plasma where ponderomotive nonlinearity is operative. Starting from nonlinear Schrödinger-type wave equation in Wentzel–Kramers–Brillouin (WKB) approximation, the coupled differential equations governing the evolution of spot size of laser beams with distance of propagation have been derived. The ponderomotive nonlinearity depends not only on the intensity of first laser beam, but also on that of second laser beam. Therefore, the dynamics of one laser beam affects that of other and hence, cross-focusing of the two laser beams takes place. Due to nonuniform intensity distribution along the wavefronts of the laser beams, the background electron concentration is modified. The amplitude of EPW, which depends on the background electron concentration, is thus nonlinearly coupled with the laser beams. The effects of ponderomotive nonlinearity and cross-focusing of the laser beams on excitation of EPW have been incorporated. Numerical simulations have been carried out to investigate the effect of laser and plasma parameters on cross-focusing of the two laser beams and further its effect on EPW excitation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amendt, P., Eder, D.C. & Wilks, S.C. (1991). X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66, 25892592.Google Scholar
Amini, B. & Chen, F.F. (1984). Thomson-scattering detection of plasma waves excited by two laser beams. Phys. Rev. Lett. 53, 14411444.Google Scholar
Brueckner, K.A. & Jorna, S. (1974). Laser-driven fusion. Rev. Modern Phys. 46, 325.CrossRefGoogle Scholar
Campillo, A.J., Shapiro, S.L. & Suydam, B.R. (1973). Periodic breakup of optical beams due to self-focusing. Appl. Phys. Lett. 23, 628631.Google Scholar
Cano, R., Fidone, I. & Zanfagna, B. (1971). Local density measurements by nonlinear mixing of electromagnetic waves. Phys. Fluids 14, 811.CrossRefGoogle Scholar
Cohen, B.I., Kaufman, A.N. & Watson, K.M. (1972). Beat heating of a plasma. Phys. Rev. Lett. 29, 581584.Google Scholar
Darrow, C., Mori, W.B., Katsouleas, T., Joshi, C., Umstadter, D. & Clayton, C.E. (1987). Electrostatic mode coupling of beat-excited electron plasma waves. IEEE Trans. Plasma Sci. 15, 107130.Google Scholar
Darrow, C., Umstadter, D., Katsouleas, T., Mori, W.B., Clayton, C.E. & Joshi, C. (1986). Saturation of beat-excited plasma waves by electrostatic mode coupling. Phys. Rev. Lett. 56, 26292632.Google Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 24832486.Google Scholar
Divol, L., Berger, R.L., Cohen, B.I., Williams, E.A., Langdon, A.B., Lasinski, B.F., Froula, D.H. & Glenzer, S.H. (2003). Modeling the nonlinear saturation of stimulated Brillouin backscatter in laser heated plasmas. Phys. Plasmas 10, 1822.Google Scholar
Eder, D.C., Amendt, P., DaSilva, L.B., London, R.A., MacGowan, B.J., Matthews, D.L., Penetrante, B.M., Rosen, M.D., Wilks, S.C., Donnelly, T.D., Falcone, R.W. & Strobel, G.L. (1994). Tabletop X-ray lasers. Phys. Plasmas 1, 1744.CrossRefGoogle Scholar
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Gasilov, S.V., Stagira, S., Calegari, F., Nisoli, M., Silvestri, S., Poletto, L., Villoresi, P. & Andreev, A.A. (2007). X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267275.Google Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.P., Burgy, F. & Malka, V. (2004). A laserplasma accelerator producing monoenergetic electron beams. Nature 431, 541544.Google Scholar
Fuchs, J., Labaune, C., Depierreux, S. & Tikhonchuk, V.T. (2000). Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment. Phys. Plasmas 7, 4659.Google Scholar
Geddes, C.G.R., Toth, C., Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.Google Scholar
Gupta, M.K., Sharma, R.P. & Gupta, V.L. (2005). Cross focusing of two laser beams and plasma wave excitation. Phys. Plasmas 12, 123101.Google Scholar
Gupta, R., Sharma, P., Chauhan, P.K., Rafat, M. & Sharma, R.P. (2009). Effect of ultrarelativistic laser beam filamentation on third harmonic spectrum. Phys. Plasmas 16, 043101.Google Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.Google Scholar
Kaufman, A.N. & Cohen, B.I. (1973). Nonlinear interaction of electromagnetic waves in a plasma density gradient. Phys. Rev. Lett. 30, 13061309.Google Scholar
Kaw, P., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 16, 1522.Google Scholar
Kroll, N., Ron, A. & Rostoker, N. (1964). Optical mixing as a plasma density probe. Phys. Rev. Lett. 13, 8386.Google Scholar
Lam, J.F., Lippman, B. & Tappert, F. (1975). Moment theory of self-trapped laser beams with nonlinear saturation. Opt. Commun. 15, 419421.Google Scholar
Lam, J.F., Lippman, B. & Tappert, F. (1977). Self-trapped laser beams in plasma. Phys. Fluids 20, 1176.Google Scholar
Maiman, T.H. (1960). Stimulated optical radiation in ruby. Nature 187, 493.CrossRefGoogle Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laserplasma interactions. Nature 431, 535538.Google Scholar
Max, C.E. (1976). Strong self-focusing due to the ponderomotive force in plasmas. Phys. Fluids 19, 74.Google Scholar
Milroy, R.D., Capjack, C.E. & James, C.R. (1979) Plasma laser pulse amplifier using induced Raman or Brillouin processes. Phys. Fluids 22, 1922.Google Scholar
Nakatsutsumi, M., Davies, J.R., Kodama, R., Green, J.S., Lancaster, K.L., Akli, K.U., Beg, F.N., Chen, V, Clark, D., Freeman, R.R., Gregory, C.D., Habara, H., Heathcote, R., Hey, D.S., Highbarger, K., Jaanimagi, P., Key, M.H., Krushelnick, K., Ma, T., Macphee, A., MacKinnon, A.J., Nakamura, H., Stephens, R.B., Storm, M., Tampo, M., Theobald, W., Woerkom, L.V., Weber, R.L., Wei, M.S., Woolsey, N.C. & Norreys, P.A. (2008). Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser. New J. Phys. 10, 043046.Google Scholar
Patel, P.K., Key, M.H., Mackinnon, A.J., Berry, R., Borghesi, M., Chambers, D.M., Chen, H., Clarke, R., Damian, C., Eagleton, R., Freeman, R., Glenzer, S., Gregori, G., Heathcote, R., Hey, D., Izumi, N., Kar, S., King, J., Nikroo, A., Niles, A., Park, H.S., Pasley, J., Patel, N., Shepherd, R., Snavely, R.A., Steinman, D., Stoeckl, C., Storm, M., Theobald, W., Town, R., Maren, R.V., Wilks, S.C. & Zhang, B. (2005). Integrated lasertarget interaction experiments on the RAL petawatt laser. Plasma Phys. Control. Fusion 47, B833.CrossRefGoogle Scholar
Rasmussen, J.J. & Rypdal, K. (1986). Blow-up in nonlinear Schroedinger equations-I a general review. Phys. Scr. 33, 481.Google Scholar
Rosenbluth, M.N. & Liu, C.S. (1972). Excitation of plasma waves by two laser beams. Phys. Rev. Lett. 29, 701704.Google Scholar
Rypdal, K. & Rasmussen, J.J. (1986). Blow-up in nonlinear Schroedinger equations-II similarity structure of the blow-up singularity. Phys. Scr. 33, 498.Google Scholar
Salih, H.A., Mahmoud, S.T. & Sharma, R.P. (2005). Stimulated Raman scattering of relativistic laser beam in plasmas. Phys. Plasmas 12, 042302.Google Scholar
Schmitt, A. & Ong, R.S.B. (1983). Theory of transient self-focusing of a CO2 laser pulse in a cold dense plasma. J. Appl. Phys. 54, 3003.CrossRefGoogle Scholar
Sharma, A. & Kourakis, I. (2010). Spatial evolution of a q-Gaussian laser beam in relativistic plasma. Laser Part. Beams 28, 479489.CrossRefGoogle Scholar
Singh, A. & Gupta, N. (2015). Second harmonic generation by relativistic self-focusing of q-Gaussian laser beam in preformed parabolic plasma channel. Phys. Plasmas 22, 013102.Google Scholar
Singh, A. & Walia, K. (2010). Relativistic self-focusing and self-channeling of Gaussian laser beam in plasma. Appl. Phys. B 101, 617622.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self-focusing of laser beams in plasmas and semiconductors. Progress in Optics, North Holland, Amsterdam 13, 171.Google Scholar
Stenflo, L., Shukla, P.K. & Yu, M.Y. (1986). Excitation of electrostatic fluctuations by thermal modulation of whistlers. J. Geophys. Res. 86, 7718.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.Google Scholar
Tikhonchuk, V.T., Mounaix, P. & Pesme, D. (1997). Stimulated Brillouin scattering reflectivity in the case of a spatially smoothed laser beam interacting with an inhomogeneous plasma. Phys. Plasmas 4, 2658.Google Scholar
Tiwari, P.K. & Tripathi, V.K. (2006). Laser beat-wave excitation of plasma waves in a clustered gas. Phys. Scr. 73, 393.Google Scholar
Weibel, E.S. (1976). Emission of longitudinal waves from the interaction of two beams of transverse radiation. Phys. Fluids 19, 1237.Google Scholar
Weyl, G. (1970). Optical mixing in a magnetoactive plasma. Phys. Fluids 13, 1802.Google Scholar
Xu, Z., Yu, W., Zhang, W., Xu, T. (1988). Plasma heating by the beat between two light waves. Phys Rev. A 38, 3643.Google Scholar