Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T08:09:21.988Z Has data issue: false hasContentIssue false

Electron diffraction on a traveling wave: “Inelastic Kapitza–Dirac effect”

Published online by Cambridge University Press:  27 June 2016

H. K. Avetissian*
Affiliation:
Centre of Strong Fields Physics, Yerevan State University, 1 A. Manukian, Yerevan 0025, Armenia
*
Address correspondence and reprint requests to: H. K. Avetissian, Centre of Strong Fields Physics, Yerevan State University, 1 A. Manukian, Yerevan 0025, Armenia. E-mail: [email protected]

Abstract

In this paper, conceptual points regarding electron elastic (Kapitza–Dirac effect) and inelastic diffraction effects on the slowed electromagnetic wave-structures/light-gratings are considered. From the unified point of view it is analyzed the main works on this subject for last four decades in chronological order, pointing out the essential peculiarity inherent in induced Cherenkov, Compton, and undulator/wiggler processes too. This review paper has also purpose to resolve confusion in scientific literature connected with the recently appeared paper Hayrapetyan et al. in 2015 regarding electron diffraction effect on a traveling wave in a dielectric medium.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, S., Bauke, H., Keitel, C.H. & Müller, C. (2012). Spin dynamics in the Kapitza–Dirac effect. Phys. Rev. Lett. 109, 043601.Google Scholar
Ahrens, S., Bauke, H., Keitel, C.H. & Müller, C. (2013). Kapitza–Dirac effect in the relativistic regime. Phys. Rev. A 88, 012115.Google Scholar
Avetissian, H.K. (1976). Diffraction of electrons on the travelling electromagnetic wave. Phys. Lett. 58A, 144146.Google Scholar
Avetissian, H.K. (1977). The energy spread of an electron beam as a result of Cerenkov diffraction on an intensive wave. Phys. Lett. 63A, 78.Google Scholar
Avetissian, H.K. (1978). The monochromatization of a beam of charged particles by Cherenkov interaction. Phys. Lett. 69A, 399.Google Scholar
Avetissian, H.K. (1979). Monochromatization of charged particles beams by counterpropagating laser pulses. Sov. J. Tech. Phys. 49, 21182124.Google Scholar
Avetissian, H.K. (1982–1983). Interaction of charged particles with intense electromagnetic radiation, Doctoral Thesis, Yerevan, Moscow.Google Scholar
Avetissian, H.K. (1997). On the stimulated Cherenkov effect. Phys. Usp. 40, 755760.Google Scholar
Avetissian, H.K. (2006). Relativistic Nonlinear Electrodynamics: Interaction of Charged Particles with Strong and Super Strong Laser Fields. New York: Springer.Google Scholar
Avetissian, H.K. (2016). Relativistic Nonlinear Electrodynamics: The QED Vacuum and Matter in Super-Strong Radiation Fields. The Netherlands: Springer.Google Scholar
Avetissian, H.K., Bagdasarian, A.KH., Hatsagortsian, K.Z. & Mkrtchian, G.F. (1998 a). Quantum theory of induced Cherenkov processes at exact resonance. Phys. Lett. A 244, 2530.Google Scholar
Avetissian, H.K., Bagdasarian, A.KH., Hatsagortsian, K.Z. & Mkrtchian, G.F. (1998 b). Quantum theory of the nonlinear stimulated Cherenkov process. Phys. Lett. A 246, 1624.Google Scholar
Avetissian, H.K., Bagdasarian, A.KH. & Mkrtchian, G.F. (1998 c). Nonlinear quantum theory of interaction of charged particles and monochromatic radiation in a medium. JETP 86, 2431.Google Scholar
Avetissian, H.K., Jivanian, H.A. & Petrossian, R.G. (1978). “Reflection” and catching of charged particles by a plane electromagnetic wave in an undulator. Phys. Lett. 66A, 161163.Google Scholar
Avetissian, H.K., Jivanian, H.A. & Petrossian, R.G. (1981 a). Diffraction of electrons on a plane electromagnetic wave in an undulator. Phys. Lett. 81A, 449451.Google Scholar
Avetissian, H.K., Jivanian, H.A. & Petrossian, R.G. (1981 b). Monochromatization of charged particles beams by a laser pulse in undulator. Sov. J. Pis'ma JETP 34, 561564.Google Scholar
Avetissian, H.K. & Mkrtchian, G.F. (2001). Coherent x-ray source due to the quantum reflection of an electron beam from a laser-field phase lattice. Phys. Rev. E 65, 016506.Google Scholar
Batelaan, H. (2007). Illuminating the Kapitza–Dirac effect with electron matter optics. Rev. Mod. Phys. 79, 929941.Google Scholar
Bucksbaum, P.H., Schumacher, D.W. & Bashkansky, M. (1988). High-intensity Kapitza–Dirac effect. Phys. Rev. Lett. 61, 11821185.Google Scholar
Dellweg, M. & Müller, C. (2015). Kapitza–Dirac scattering of electrons from a bichromatic standing laser wave. Phys. Rev. A 91, 062102.Google Scholar
Edighoffer, J.A., Kimura, W.D., Pantell, R.H., Piestrup, M.A. & Wang, D.Y. (1981). Observation of inverse C̆erenkov interaction between free electrons and laser light. Phys. Rev. 23A, 18481854.Google Scholar
Ehlotzky, F. & Leubner, C. (1974). Elementary theory of the Kapitza–Dirac effect. Opt. Commun. 10, 175180.Google Scholar
Ehlotzky, F. & Leubner, C. (1975). Elastic and inelastic scattering of electrons by a standing wave of intense and coherent light. J. Phys. A: Math. Gen. 8, 18061813.Google Scholar
Eichmann, U., Nubbemeyer, T., Rottkel, H. & Sandner, W. (2009). Acceleration of neutral atoms in strong short-pulse laser fields. Nature 461, 12611264.Google Scholar
Eilzer, S., Zimmermann, H. & Eichmann, U. (2014). Strong-field Kapitza–Dirac scattering of neutral atoms. Phys. Rev. Lett. 112, 113001.Google Scholar
Gadway, B., Pertot, D., Reimann, R., Cohen, M.G. & Schneble, D. (2009). Analysis of Kapitza–Dirac diffraction patterns beyond the Raman–Nath regime. Opt. Exp. 17, 1917319180.Google Scholar
Goldman, I.I. (1964). Intensity effects in Compton scattering. Sov. JETP 46, 14121417.Google Scholar
Fedorov, M.V. (1967). The Kapitza–Dirac effect in a strong radiation field. Sov. JETP 52, 14341445.Google Scholar
Fedorov, M.V. (1975). Scattering of electrons by a strong standing wave in adiabatic switching of interaction. Sov. J. Quantum Electron. 5, 816821.Google Scholar
Fedorov, M.V. & McIver, J. (1980). Multiphoton stimulated Compton-scattering. Opt. Commun. 32, 179182.Google Scholar
Florescu, M. & Cionga, A. (2000). 1D numerical simulations for electron scattering on a potential in a bichromatic field. Laser Part. Beams 18, 455460.Google Scholar
Freimund, D.L., Aflatooni, K. & Batelaan, H. (2001). Observation of the Kapitza–Dirac effect. Nature 413, 142143.Google Scholar
Freimund, D.L. & Batelaan, H. (2002). Bragg scattering of free electrons using the Kapitza–Dirac effect. Phys. Rev. Lett. 89, 283602.Google Scholar
Haroutunian, V.M. & Avetissian, H.K. (1972). Reflection and capture of a charged particle by a plane electromagnetic wave in a medium. Sov. J. Quantum Electron. 2, 3941.Google Scholar
Haroutunian, V.M. & Avetissian, H.K. (1975). An analogue of the Kapitza–Dirac effect. Phys. Lett. 51A, 320322.Google Scholar
Haroutunian, V.M. & Avetissian, H.K. (1976). “Reflection” and catching of electrons in the field of opposite electromagnetic waves. Phys. Lett. 59A, 115117.Google Scholar
Hayrapetyan, A.G., Grigoryan, K.K., Götte, J. B. & Petrosyan, R.G. (2015). Kapitza–Dirac effect with traveling waves. New J Phys. 17, 082002.Google Scholar
Kapitza, P.L. & Dirac, P.A.M. (1933). The reflection of electrons from standing light waves. Proc. Camb. Phil. Soc. 29, 297300.Google Scholar
Kaplan, A.E. & Pokrovsky, A.L. (2005). Fully relativistic theory of the ponderomotive force in an ultraintense standing wave. Phys. Rev. Lett. 95, 053601.Google Scholar
Li, X., Zhang, J., Xu, Z., Fu, P., Guo, D-S. & Freeman, R.R. (2004). Theory of the Kapitza–Dirac diffraction effect. Phys. Rev. Lett. 92, 233603.Google Scholar
Piestrup, M.A., Rothbart, G.B., Fleming, R.N. & Pantell, R.H. (1975). Momentum modulation of a free electron beam with a laser. J. Appl. Phys. 46, 132137.Google Scholar
Rosenberg, L. (2004). Extended theory of Kapitza–Dirac scattering. Phys. Rev. A 70, 023401.Google Scholar
Saakyan, G.S. & Chubaryan, E.V. (1982). Quantum Mechanics. Yerevan: Yerevan State University.Google Scholar
Sancho, P. (2010). Two-particle Kapitza–Dirac diffraction. Phys. Rev. A 82, 033814.Google Scholar
Sancho, P. (2011). The Bragg regime of the two-particle Kapitza–Dirac effect. J. Phys. B 44, 145002.Google Scholar
Schwarz, H. (1967). The reflection of electrons from standing light waves. Z. Phys. 204, 276289.Google Scholar
Schwarz, H. (1973). The Kapitza–Dirac effect at high laser intensities. Phys. Lett. 43A, 457458.Google Scholar
Smirnova, O., Freimund, D.L., Batelaan, H. & Ivanov, M. (2004). Kapitza–Dirac diffraction without standing waves: diffraction without a grating? Phys. Rev. Lett. 92, 223601.Google Scholar
Takeda, Y. & Matsui, I. (1968). Electron reflection by standing wave of giant pulse laser. J. Phys. Soc. Japan 25, 1202.Google Scholar
Varro, S. & Farkas, Gy. (2007). Attosecond electron pulses from interference of above-threshold de Broglie waves. Laser Part. Beams 26, 919.Google Scholar