Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T01:06:26.410Z Has data issue: false hasContentIssue false

Electron bunch injection at an angle into a laser wakefield

Published online by Cambridge University Press:  08 January 2009

M.J.H. Luttikhof*
Affiliation:
Faculty of Science and Technology and MESA+ Institute, University of Twente, Enschede, The Netherlands
A.G. Khachatryan
Affiliation:
Faculty of Science and Technology and MESA+ Institute, University of Twente, Enschede, The Netherlands
F.A. van Goor
Affiliation:
Faculty of Science and Technology and MESA+ Institute, University of Twente, Enschede, The Netherlands
K.-J. Boller
Affiliation:
Faculty of Science and Technology and MESA+ Institute, University of Twente, Enschede, The Netherlands
P. Mora
Affiliation:
Centre de Physique Théorique, École Polytechnique, Palaiseau, France
*
Address correspondence and reprint request to M.J.H. Luttikhof, Faculty of Science and Technology and MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands. E-mail: [email protected]

Abstract

External injection of electron bunches longer than the plasma wavelength in a laser wakefield accelerator can lead to the generation of femtosecond ultra relativistic bunches with a couple of percent energy spread. Extensive study has been done on external electron bunch (e.g., one generated by a photo-cathode RF linac) injection in a laser wakefield for different configurations.

In this paper, we investigate a new way of external injection where the electron bunch is injected at a small angle into the wakefield. This way one can avoid the ponderomotive scattering as well as the vacuum-plasma transition region, which tend to destroy the injected bunch. In our simulations, the effect of the laser pulse dynamics is also taken into account. It is shown that injection at an angle can provide compressed and accelerated electron bunches with less than 2% energy spread. Another advantage of this scheme is that it has less stringent requirements in terms of the size of the injected bunch and there is the potential to trap more charge.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonsen, T.M. & Mora, P. (1992). Self-focusing and raman-scattering of laser-pulses in tenuous plasmas. Phys. Rev. Lett. 69, 22042207.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1997). IEEE. Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. J. Quantum Electron 33, 1879–1014.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Esirkepov, T., Bulanov, S.V., Yamagiwa, M. & Tajima, T. (2006). Electron, positron, and photon wakefield acceleration: trapping, wake overtaking, and ponderomotive acceleration. Phys. Rev. Lett. 96, 014803.CrossRefGoogle ScholarPubMed
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.P., Burgy, F. & Malka, V. (2004). Alaser-plasma accelerator producing monoenergetic electron beams. Nat. 431, 541544.CrossRefGoogle ScholarPubMed
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. & Malka, V. (2006). Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nat. 444, 737739.CrossRefGoogle ScholarPubMed
Geddes, C.G.R., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nat. 431, 538541.CrossRefGoogle ScholarPubMed
Gorbunov, L.M., Kalmykov, S.Y. & Mora, P. (2005). Laser wakefield acceleration by petawatt ultrashort laser pulses. Phys. Plasmas 12, 033101.CrossRefGoogle Scholar
Gordon, D.F., Hafizi, B., Hubbard, R.F., Penano, J.R., Sprangle, P. & Ting, A. (2003). Asymmetric self-phase modulation and compression of short laser pulses in plasma channels. Phys. Rev. Lett. 90, 215001.CrossRefGoogle ScholarPubMed
Gordon, D.F., Hubbard, J.H., Hafizi, B., Ting, A. & Sprangle, P. (2005). Quasimonoenergetic electrons from unphased injection into channel guided laser wakefield accelerators. Phys. Rev. E 71, 026404.Google Scholar
Hubbard, R.F., Gordon, D.F., Cooley, J.H., Hafizi, B., Jones, T.G., Kaganovich, D., Sprangle, P., Ting, A. & Zigler, A. (2005). Trapping and acceleration of nonideal injected electron bunches in laser wakefield accelerators. IEEE Trans. Plasma Sci. 33, 712722.Google Scholar
Irman, A., Luttikhof, M.J.H., Khachatryan, A.G., van Goor, F.A., Verschuur, J.W., Bastiaens, H.M.J. & Boller, K.-J. (2007). Design and simulation of laser wakefield acceleration with external electron bunch injection in front of the laser pulse. J Appl. Phys. 102.CrossRefGoogle Scholar
Kalmykov, S.Y., Grobunov, L.M., Mora, P. & Shvets, G. (2006). Injection, trapping, and acceleration of electrons in a three dimensional nonlinear laser wakefield. Phys. Plasmas 13, 113102.Google Scholar
Khachatryan, A.G. (1999). Excitation of nonlinear two-dimensional wake waves in radially nonuniform plasma. Phys. Rev. E 60, 62106213.Google Scholar
Khachatryan, A.G. (2001). Trapping, compression, and acceleration of an electron beam by the laser wake wave. JETP Lett. 74, 371374.CrossRefGoogle Scholar
Khachatryan, A.G. (2002). Trapping, compression and acceleration of an electron bunch in the nonlinear laser wakefield. Phys. Rev. E 65, 046504.CrossRefGoogle ScholarPubMed
Khachatryan, A.G., van Goor, F.A., Boller, K.-J., Reitsma, A.J.W. & Jaroszynskj, D.A. (2004). Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme. Phys. Rev. ST Accel. Beams 7, 121301.Google Scholar
Khachatryan, A.G., Luttikhof, M.J.H., van Goor, F.A. & Boller, K.-J. (2007). Effect of the ponderomotive scattering and injection on electron-bunch injection into a laser wakefield. Appl. Phys. B 86, 41–41.Google Scholar
Khachatryan, A.G., Lutfikhof, M.J.H., Irman, A., van Goor, F.A., Verschuur, J.W.J., Bastiaens, H.M.J. & Boller, K.-J. (2006). Conceptual design of a laser wakefield acceleration experiment with external bunch injection. Nucl. Instrum. Meth. A 566, 244249.Google Scholar
Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth, C., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B. & Hooker, S.M. (2006). Gev electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696699.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact gev laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Malka, V. & Mora, P. (2005). Gev wakefield acceleration of low energy electron bunches using petawatt lasers. Phys. Plasmas 12, 093104.CrossRefGoogle Scholar
Luttikhof, M.J.H., Khachatryan, A.G., van Goor, F.A. & Boiler, K.-J. (2007). The effect of the vacuum-plasma transition and an injection angle on electron-bunch injection into a laser wakefield. Phys. Plasmas 14, 083101.Google Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R.Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nat. 431, 431535.Google ScholarPubMed
Mora, P. & Antonsen, T. (1996). Electron cavitation and acceleration in the wake of an ultraintense, self-focused laser pulse. Phys. Rev. E 53, R206R2071.CrossRefGoogle ScholarPubMed
Pukhov, A. & Meyer-Ter Vehn, J. (2002). Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355361.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.Google Scholar
Urbanus, W.H., van Dijk, W., van der Geer, S.B., Brussaard, J.H. & van der Wiel, M.J. (2006). Front-to-end simulations of the design of a laser wakefield accelerator with external injection. J Appl. Phys. 99, 114501.Google Scholar