Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T20:06:10.007Z Has data issue: false hasContentIssue false

Electron acceleration by ponderomotive force in magnetized quantum plasma

Published online by Cambridge University Press:  06 March 2017

A.K. Singh*
Affiliation:
Department of Physics, G L Bajaj Group of Institution Mathura, Mathura-281406, India
S. Chandra
Affiliation:
Department of Physics, JIS University Agarpara, Kolkatta-700109, West Bengal, India
*
Address correspondence and reprint requests to: A.K. Singh, Department of Physics, G L Bajaj Group of Institution Mathura, Mathura-281406, India. E-mail: [email protected]

Abstract

The possibilities of electron acceleration by ponderomotive force of a circularly polarized laser pulse in magnetized quantum plasma have been explored. The basic mechanism involves acceleration of electron by the axial gradient in the ponderomotive potential of the laser. The quantum effects have been taken into account for a high-density plasma. The ponderomotive force of the laser is resonantly enhanced when Doppler up-shifted laser frequency equals the cyclotron frequency.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ali, S. (2006). Dispersion properties of compressional electromagnetic waves in quantum dusty magnetoplasmas. Phys. Plasmas 13, 052113.Google Scholar
Ali, S., Maslam, W.M., Shukla, P.K. & Schilickeiser, R. (2007). Linear and nonlinear ion-acoustic waves in an unmagnetized electron–positron–ion quantum plasma. Phys. Plasmas 14, 082307.CrossRefGoogle Scholar
Anderson, D. (2002). Statistical effects in the multistream model for quantum plasmas. Phys. Rev. E 65, 046417.CrossRefGoogle ScholarPubMed
Bret, A. (2008). Filamentation instability in a quantum magnetized plasma. Phys. Plasmas 15, 022109.CrossRefGoogle Scholar
Brodin, G., Marklund, M. & Manfredi, G. (2008). Quantum plasma effects in the classical regime. Phys. Rev. Lett. 100, 17500.Google Scholar
Cao, J. & Ren, H. (2008). Quantum effect on Rayleigh–Taylor instability in magnetized plasma. Phys. Plasmas 15, 012110.CrossRefGoogle Scholar
Ebrahim, N.A. (1994). Optical mixing of laser light in a plasma and electron acceleration by relativistic electron plasma waves. J. Appl. Phys. 76, 76457647.Google Scholar
Gahn, C. (1999). Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 4772.Google Scholar
Gardner, C.L. & Ringhofer, C. (1996). Phys. Rev. E 53, 157.Google Scholar
Haas, F., Manfredi, G. & Feix, M. (2000). A multistream model for quantum plasmas. Phys. Rev. E 62, 2763.Google Scholar
Harding, A.K. & Lai, D. (2006). Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 69, 2631.Google Scholar
Hartemann, F.V., Fochs, S.N., Sage, S.P., Luhmann, N.C., Woodworth, J.G., Perry, M.D., Chen, Y.J. & Kerman, A.K. (1995). Nonlinear ponderomotive scattering of relativistic electrons by intense laser field at focus. Phys. Rev. E 51, 48334843.CrossRefGoogle ScholarPubMed
Hogan, M.J., Barnes, C.D., Clayton, C.E., Decker, F.J., Emma, P., Huang, C., Iverson, R.H., Johnson, D.K., Joshi, C., Katsouleas, T., Krejcik, P., Lu, W., Marsh, K.A., Mori, W.B., Nuggl, P., Connel, C.L., Oz, E., Siemann, R.H. & Walz, D. (2005). Multi-GeV energy gain in a plasma wakefield-accelerator. Phys. Rev. Lett. 95, 054802.CrossRefGoogle Scholar
Jung, Y.-D. (2013). Influence of the electron-exchange and quantum shielding on the bremsstrahlung spectrum in degenerate quantum plasmas. Phys. Plasmas 20, 103302.Google Scholar
Khachatryan, A.G. (2002). Trapping, compression, and acceleration of an electron bunch in the nonlinear laser wakefield. Phys. Rev. E 65, 046504.Google Scholar
Kojima, S. (2016). Energy distribution of fast electrons accelerated by high intensity laser pulse depending on laser pulse duration. J. Phys.: Conf. Ser. 717, 012102.Google Scholar
Kumar, P. & Tewari, C. (2012). Electric,magnetic wakefields, and electron acceleration in quantum plasma. Laser Part. Beams 30, 267273.Google Scholar
Li, C., Wu, Z., Yang, W. & Chu, P.K. (2014). Surface electromagnetic wave equations in a warm magnetized quantum plasma. Phys. Plasmas 21, 072114.Google Scholar
Liu, C.S. & Tripathi, V.K. (2005). Ponderomotive effect on electron acceleration by plasma wave and betatron resonance and short pulse laser. Phys. Plasmas 12, 043103.CrossRefGoogle Scholar
Liu, H., He, X.T. & Chen, S.G. (2004). Particle acceleration through the resonance of high magnetic field and high frequency electromagnetic wave. Phys. Rev. E 69, 066409.Google Scholar
Ludin, J. (2007). Short wavelength electromagnetic propagation in magnetized quantum plasmas. Phys. Plasmas 14, 062112.CrossRefGoogle Scholar
Misra, A.P., Bhowmik, C. & Shukla, P.K. (2009). Modulational instability and envelope excitation of ion-acoustic waves in quantum electron–positron–ion plasmas. Phys. Plasmas 16, 072116.Google Scholar
Miyauchi, K., Miyazaki, S., Sakai, K., Kawata, S., Kong, Q., Andreev, A.A. & Kikuchi, T. (2004). Laser electron acceleration by a plasma separator. Phys. Plasmas 11, 4878.CrossRefGoogle Scholar
Mora, P. & Antonsen, T.M. (1997). Kinetic modeling of intense short laser pulses propagating in tendeous plasmas. Phys. Plasmas 4, 217229.CrossRefGoogle Scholar
Opher, M., Silva, L. & Dauger, D.E. (2001). Nuclear reaction rates and energy in steller plasma: the effect of highly damped mode. Phys. Plasmas 8, 2454.Google Scholar
Prasad, R., Singh, R. & Tripathi, V.K. (2009). Effect on an axial magnetic field and ion space charge on laser beat wave acceleration and surfatron acceleration of electron. Laser Part. Beams 27, 459464.CrossRefGoogle Scholar
Pukhov, A. (2004). The bubble regime of laser-plasma acceleration: monoenergetic electrons and scalability. Plasma Phys. Control. Fusion 44, B179B186.Google Scholar
Pukhov, A. & Vehn, M. (1999). Particle acceleration in relativistic laser channels. Phys. Plasmas 6, 2847.Google Scholar
Robinson, R. (2006). Low energy spread 100 MeV–1 GeV electron bunches from laser wakefield acceleration. Loasis. Proceedings of LINAC, Tennessee.Google Scholar
Sazergari, V., Muizale, M. & Shokui, B. (2006). Ponderomotive acceleration of electrons in the interaction of arbitrarily-polarized laser pulse with a tenuous plasma. Phys. Plasmas 13, 033102.Google Scholar
Seadway, A.R. (2014). Phys. Plasmas 21, 052127.Google Scholar
Sharma, A. & Tripathi, V.K. (2009). Ponderomotive acceleration of electron by a laser pulse in magnetized plasma. Phys. Plasmas 16, 043103.Google Scholar
Shokari, B., Khorashady, S.M. & Pramana, M. (2003). Oblique modulation of electron-acoustic waves in a Fermi electron–ion plasma. Phys. Plasmas 61, 1.Google Scholar
Shukla, P.K. (2006). Dispersive electromagnetic drift modes in non-uniform quantum magneto plasmas. Phys. Plasmas 13, 082101.Google Scholar
Shukla, P.K. & Eliasson, B. (2006). Phys. Rev. Lett. 96, 245001.CrossRefGoogle Scholar
Shukla, P.K. & Eliassion, B. (2007). Nonlinear interactions between electromagnetic wave and electron plasma oscillations in quantum plasma. Phys. Rev. Lett. 99, 096401.Google Scholar
Shukla, P.K., Shukla, N. & Stenflo, L. (2010). Generation of magnetic fields by the ponderomotive force of electromagnetic wave in dense plasma. J. Plasma Phys. 76, 2528.CrossRefGoogle Scholar
Singh, R., Sharma, A. & Tripathi, V.K. (2010). Ponderomotive acceleration of electron by a self focused laser pulse. Phys. Plasmas 17, 123109.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Tanimoto, M. (2003). Direct electron acceleration by stochastic laser fields in the presence of self-generated magnetic fields. Phys. Rev. E 68, 026401.Google Scholar
Tsakiris, G.D., Gahn, C. & Tripathi, V.K. (2000). Laser induced electron acceleration in the presence of static electric and magnetic fields in a plasma. Phys. Plasmas 7, 3017.Google Scholar
Wallin, E., Zamanian, J. & Brodin, G. (2014). J. Plasma Phys. 80, 643.CrossRefGoogle Scholar
Wang, Y., Shukla, P.K. & Eliassion, B. (2013). Phys. Plasmas 20, 013103.Google Scholar
Yu, W., Bychenkov, V., Senyoku, Y., Yu, M.Y., Sheng, Z.M. & Mima, K. (2000). Electron acceleration by a short laser pulse at the front of solid target. Phys. Rev. Lett. 85, 570573.Google Scholar
Yu, W., Chen, Z.Y., Yu, M.Y., Qian, L.J., Lu, R.X. & Koyama, K. (2002). Electron acceleration and high-order harmonic generation by an intense short pulse laser in a magnetic field. Phys. Rev. E 66, 036406.CrossRefGoogle ScholarPubMed
Zhu, J. and Ji, P. (2012). Dispersion relation and Landau damping of waves in high-energy density plasmas. Plasma Phys. Control. Fusion 54, 065004.Google Scholar