Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T17:16:52.367Z Has data issue: false hasContentIssue false

Effects of transverse static electric field on terahertz radiation generation by beating of two transversely modulated Gaussian laser beams in a plasma

Published online by Cambridge University Press:  10 June 2014

Prateek Varshnety
Affiliation:
Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Uttar Pradesh, India
Vivek Sajal*
Affiliation:
Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Uttar Pradesh, India
Prashant Chauhan
Affiliation:
Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Uttar Pradesh, India
Ravindra Kumar
Affiliation:
Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Uttar Pradesh, India
Navneet K. Sharma
Affiliation:
Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Uttar Pradesh, India
*
Address correspondence and reprint requests to: Vivek Sajal, Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Noida-201307, Uttar Pradesh, India. E-mail: [email protected]

Abstract

Resonant excitation of terahertz (THz) radiation by nonlinear coupling of two filamented spatial-Gaussian laser beams of different frequencies and wave numbers is studied in plasma having transverse static electric field. The static ponderomotive force due to filamented lasers is balanced by the pressure gradient force which gives rise to transverse density ripple, while, the nonlinear ponderomotive force at frequency difference of beating lasers couples with density ripple giving rise to stronger transverse nonlinear current which results into the excitation of THz radiation at resonance. The coupling is further enhanced by the presence of static electric field and spatial-Gaussian nature of laser beams. An increase of six-fold in the normalized amplitude of THz is observed by applying a direct current field of about 50 KV. Effects of frequency, laser beam width, and periodicity factor of modulated laser amplitude are studied for the efficient THz radiation generation. These results can be utilized for generating controlled tunable THz sources for medical applications using low filament intensities (~ 1014 W/cm2) of beating lasers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abo-Bakr, M., Feikes, J., Holldack, K., Kuske, P., Peatman, W.B., Schade, U., Wustefeld, G. & Hübers, H.W. (2003). Brilliant, coherent far-infrared (THz) synchrotron radiation. Phys. Rev. Lett. 90, 094801.CrossRefGoogle ScholarPubMed
Antonsen, T.M., Palastra, J.J. & Milchberg, H.M. (2007). Excitation of terahertz radiation by laser pulses in nonuniform plasma channels. Phys. Plasmas 14, 033107.CrossRefGoogle Scholar
Bhasin, L. & Tripathi, V.K. (2011). Terahertz generation from laser filaments in the presence of a static electric field in a plasma. Phys. Plasma 18, 123106.CrossRefGoogle Scholar
Breunig, I., Kiessling, J., Sowade, R., Knabe, R. & Buse, K. (2008). Generation of tunable continuous-wave terahertz radiation by photo mixing the signal waves of a dual-crystal optical parametric oscillator. New J.Phys. 10, 073003.CrossRefGoogle Scholar
Chen, F.F. (1983). Introduction to Plasma Physics and Controlled Fusion. New York: Plenum Press.Google Scholar
Carr, G.L., Martin, M.C., Mckinney, W.R., Jordan, K., Neil, G.R. & Williams, G.P. (2002). High-power terahertz radiation from relativistic electrons. Nat. 420, 153.CrossRefGoogle ScholarPubMed
Dua, H.W., Chena, M., Shenga, Z.M. & Zhanga, J. (2011). Numerical studies on terahertz radiation generated from two color laser pulse interaction with gas targets. Laser Part. Beams 29, 447.CrossRefGoogle Scholar
Faure, J., Tilborg, J.V., Kaindl, R.A. & Leemans, W.P. (2004). Single-shot spatiotemporal measurements of high-field terahertz pulses. Opt. Quan. Electron. 36, 681.CrossRefGoogle Scholar
Ferguson, B. & Zhang, X.C. (2002). Materials for terahertz science and technology. Nat. Mater. 1, 26.CrossRefGoogle ScholarPubMed
Garg, V. & Tripathi, V.K. (2010). Resonant third harmonic generation of an infrared laser in a semiconductor wave guide. Laser Part. Beams 28, 327.CrossRefGoogle Scholar
Ghorbanalilu, M. (2012). Second and third harmonics generations in the interaction of strongly magnetized dense plasma with an intense laser beam. Laser Part. Beams 30, 291.CrossRefGoogle Scholar
Giulietti, D., Banfi, G.P., Deha, I., Giulietti, A., Lucchesi, M., Nocera, L. & Zun, C.Z. (1988). Second harmonic generation in underdense plasma. Laser Part. Beams 6, 141.CrossRefGoogle Scholar
Hamster, H., Sullivan, A., Gordon, S., White, W. & Falcone, R.W. (1993). Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 2725.CrossRefGoogle ScholarPubMed
Hamster, H., Sullivan, A., Gordon, S. & Falcone, R.W. (1994). Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Phys. Rev. E 49, 671.CrossRefGoogle ScholarPubMed
Hashimshony, D., Zigler, A. & Papadopoulos, K. (1999). Generation of tunable far-infrared radiation by the interaction of a superluminous ionizing front with an electrically biased photoconductor. Appl. Phys. Lett. 74, 1669.CrossRefGoogle Scholar
Houard, A., Liu, Y., Prade, B., Tikhonchuk, V.T. & Mysyrowicz, A. (2008). Strong Enhancement of terahertz radiation from laser filaments in air by a static electric field. Phys. Rev. Lett. 100, 255006.CrossRefGoogle ScholarPubMed
Hu, G.Y., Shen, B., Lei, A., Li, R. & Xu, Z. (2010). Transition Cherenkov radiation of terahertz generated by superluminous ionization front in femtosecond laser filament. Laser Part. Beams 28, 399.CrossRefGoogle Scholar
Jiang, Y., Li, D., Ding, Y.J. & Zotova, I.B. (2011). Terahertz generation based on parametric conversion from saturation of conversion efficiency to back conversion. Opt. Lett. 36, 1608.CrossRefGoogle ScholarPubMed
Kumar, K.K.M. & Tripathi, V.K. (2013). Third harmonic generation of a nonlinear laser Eigen mode of a self sustained plasma channel. Laser Part. Beams 31, 163.CrossRefGoogle Scholar
Ladouceur, H.D., Baronavski, A.P., Lohrmann, D., Grounds, P.W. & Girardi, P.G. (2001). Electrical conductivity of a femtosecond laser generated plasma channel in air. Opt. Commun. 189, 107.CrossRefGoogle Scholar
Leemans, W.P., Tilborg, J.V., Faure, J., Geddes, C.G.R., Toth, C., Schroeder, C.B., Esarey, E., Fubioni, G. & Dugan, G. (2004). Terahertz radiation from laser accelerated electron bunches. Phys. Plasmas 11, 2899.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2009). Tunable terahertz radiation from a tunnel ionized magnetized plasma cylinder. J. Appl. Phys. 105, 013313.CrossRefGoogle Scholar
Loffler, T., Kress, M., Thomson, M. & Roskos, H.G. (2005). Efficient Terahertz pulse generation in laser-induced gas plasmas. Acta Phys.Polonica A 107, 1.Google Scholar
Loffler, T., Jacbo, F. & Roskos, H.G. (2000). Generation of terahertz pulses by photoionization of electrically biased air. Appl. Phys. Lett. 77, 453.CrossRefGoogle Scholar
Malik, A.K. & Malik, H.K. (2013). Tuning and focusing of terahertz radiation by dc magnetic field in a laser beating process. IEEE J. Quant. Electron. 49, 232.CrossRefGoogle Scholar
Malik, A.K., Malik, H.K. & Kawata, S. (2010). Investigations on THz radiation generated by two superposed femtosecond laser pulses. J. Appl. Phys. 107, 113105.CrossRefGoogle Scholar
Markelz, A., Roitberg, A. & Heilwiel, E. (2000). Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett. 320, 42.CrossRefGoogle Scholar
Mittleman, D., Jacobsen, R. & Nuss, M. (1996). T-ray imaging. Quan. Electron. 2, 679.CrossRefGoogle Scholar
Panwar, A., Ryu, C.M. & Kumar, A. (2013). Effect of plasma channel non-uniformity on resonant third harmonic generation. Laser Part. Beams 31, 531.CrossRefGoogle Scholar
Paknezhad, A. & Dorranian, D. (2011). Nonlinear backward Raman Scattering in the short laser pulse interaction with a cold under dense transversely magnetized plasma. Laser Part. Beams 29, 373.CrossRefGoogle Scholar
Pickwell, E. & Wallace, V.P. (2006). Biomedical applications of terahertz technology. J. Phys. D: Appl. Phys. 39, R301.CrossRefGoogle Scholar
Pukhov, A. (2003). Strong field interaction of laser radiation. Rep. Prog. Phys. 66, 47.CrossRefGoogle Scholar
Sharma, R.P., Monika, M., Sharma, P., Chauhan, P. & Jia, A. (2010). Interaction of high power laser beam with magnetized plasma and THz generation. Laser Part. Beams 28, 531.CrossRefGoogle Scholar
Shen, Y.C., Today, T.Lo.P.F., Cole, B.E., Tribe, W.R. & Kemp, M.C. (2005). Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116.CrossRefGoogle Scholar
Shi, W., Ding, Y.J., Fernelius, N. & Vodopyanov, K. (2002). Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal. Opt. Lett. 27, 1454.CrossRefGoogle ScholarPubMed
Tani, M., Gu, P., Hyodo, M., Sakai, K. & Hidaka, T. (2000). Generation of coherent terahertz radiation by photo mixing of dual-mode lasers. Opt. Quan. Electron. 32, 503520.CrossRefGoogle Scholar
Tripathi, V.K. & Liu, C.S. (1990). Plasma effects in a free electron laser. IEEE Trans. Plasma Sci. 18, 466.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2009). Laser second harmonic generation in a rippled density plasma in the presence of azimuthal magnetic field. Laser Part. Beams 27, 719.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2011). Nonlinear electromagnetic Eigen modes of a self created magnetized plasma channel and its stimulated Raman scattering. Laser Part. Beams 29, 471.CrossRefGoogle Scholar
Varshney, P., Sajal, V., Singh, K.P., Kumar, R. & Sharma, N.K. (2013). Strong terahertz radiation generation by beating of extra-ordinary mode lasers in a rippled density magnetized plasma. Laser Part. Beams 31, 337.CrossRefGoogle Scholar
Walther, M., Fischer, B. & Schall, M. (2000). Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy. Chem. Phys. Lett. 332, 389.CrossRefGoogle Scholar
Wang, T.J., Daigle, J.F., Yuan, S., Theberge, F., Chateauneuf, M., Dubois, J., Roy, G., Zeng, H. & Chin, S. L. (2011). Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air. Phys. Rev. A 83, 053801.CrossRefGoogle Scholar
Zhao, P., Ragam, S., Ding, Y.J. & Zotova, I.B. (2010). Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser. Opt. Lett. 35, 3979.CrossRefGoogle ScholarPubMed
Zheng, H., Redo-Sanchez, A. & Zhang, X.C. (2006). Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system. Opt. Express 14, 9130.CrossRefGoogle Scholar