Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T17:26:07.778Z Has data issue: false hasContentIssue false

Effects of plasma and ultrashort laser pulse on residual electron energy in optical-field-ionized oxygen plasma

Published online by Cambridge University Press:  02 April 2013

Esmaeil Eslami*
Affiliation:
Department of Physics, Iran University of Science & Technology, Narmak, Tehran, Iran
Keyvan Basereh
Affiliation:
Department of Physics, Iran University of Science & Technology, Narmak, Tehran, Iran
*
Address correspondence and reprint requests to: Esmaeil Eslami, Department of Physics, Iran University of Science & Technology, Narmak, Tehran, 16846-13114, Iran. E-mail: [email protected]

Abstract

In this paper the classical theory of Above Threshold Ionization (ATI) in the oxygen plasma was used to show how the residual electron energy depends on the laser parameters such as pulse length, wavelength and peak intensity. The value of ATI energy is found to increase with laser wavelength and its intensity. Our study conducted for three cases of τ > 2π/νp, τ = 2π/ωp, and τ < 2π/ωp, where ωp is the plasma frequency, reveals that the ATI energy is decreased for the pulse duration τ ≠ 2π/ωp. Also it is showed how the space charge effect can reduce the residual electron energy to a minimum value, in a suitable condition. By optimizing various parameters, we can generate the cold electrons suitable for the recombination x-ray laser.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ammosov, M.V., Delone, N.B. & Krainov, V.P. (1989). Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. J.Exper. Theor. Phys. 64, 4.Google Scholar
Augst, S., Strickland, D., Meyerhofer, D.D., Chin, S.L. & Eberly, J.H. (1989). Tunneling ionization of noble gases in a high-intensity laser field. Phys. Rev. Lett. 63, 22122215.CrossRefGoogle Scholar
Bauer, D. (2003). Plasma formation through field ionization in intense laser-matter interaction. Laser Part. Beams 21, 489495.CrossRefGoogle Scholar
Becker, W., Grasbon, F., Kopold, R., Milošević, D.B., Paulus, G.G. & Walther, H. (2002). Above-threshold ionization: From classical features to quantum effects. Advan. Atom., Molecul. Opt. Phys. B 48, 3598.CrossRefGoogle Scholar
Burnett, N.H. & Corkum, P.B. (1989). Cold-plasma production for recombination extremeultraviolet lasers by optical-field-induced ionization. J. Opt. Soc. Am. B 6, 11951199.CrossRefGoogle Scholar
Burnett, N.H. & Enright, G.D. (1990). Population inversion in the recombination of optically-ionized plasmas. Quan. Electr., IEEE J. 26, 17971808.CrossRefGoogle Scholar
Busuladžić, M., Gazibegović-Busuladžić, A. & Milošević, D.B. (2009). Strong-field approximation for ionization of a diatomic molecule by a strong laser field. III. High-order above-threshold ionization by an elliptically polarized field. Phys. Rev. A 80, 013420.CrossRefGoogle Scholar
Byrne, G.D. & Hindmarsh, A.C. (1987). Review of current and coming attractions. J Comput. Phys. 70, 162.CrossRefGoogle Scholar
Chichkov, B.N., Egbert, A., Eichmann, H., Momma, C., Nolte, S. & Wellegehausen, B. (1995). Soft-X-ray lasing to the ground states in low-charged oxygen ions. Phys. Rev. A 52, 16291639.CrossRefGoogle Scholar
Corkum, P.B. (1993). Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 19941997.CrossRefGoogle ScholarPubMed
Corkum, P.B., Burnett, N.H. & Brunel, F. (1989). Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 12591262.CrossRefGoogle ScholarPubMed
Eder, D.C., Amendt, P. & Wilks, S.C. (1992). Optical-field-ionized plasma X-ray lasers. Phys. Rev. A 45, 67616772.CrossRefGoogle ScholarPubMed
Freeman, R.R., Bucksbaum, P.H., Milchberg, H., Darack, S., Schumacher, D. & Geusic, M.E. (1987). Above-threshold ionization with subpicosecond laser pulses. Phys. Rev. Lett. 59, 10921095.CrossRefGoogle ScholarPubMed
Grout, M.J., Janulewicz, K.A., Healy, S.B. & Pert, G.J. (1997). Optical-field induced gas mixture breakdown for recombination X-ray lasers. Opt. Commun. 141, 213220.CrossRefGoogle Scholar
Hulin, S., Auguste, T., D'Oliveira, P., Monot, P., Jacquemot, S., Bonnet, L. & Lefebvre, E. (2000). Soft-X-ray laser scheme in a plasma created by optical-field-induced ionization of nitrogen. Phys. Rev. E 61, 56935700.CrossRefGoogle Scholar
Ivanova, E.P. (2011). Highly efficient tabletop X-ray laser at λ = 41.8 nm in Pd-like xenon pumped by optical-field ionization in a cluster jet. Phys. Rev. A 84, 043829.CrossRefGoogle Scholar
Javanainen, J., Eberly, J.H. & Su, Q. (1988). Numerical simulations of multiphoton ionization and above-threshold electron spectra. Phys. Rev. A 38, 34303446.CrossRefGoogle ScholarPubMed
Keldysh, L.V. (1964). Ionization in the field of a strong electromagnetic wave. Zh Eksperim i Teor Fiz 47, 19451957.Google Scholar
Kuroda, H., Suzuki, M., Ganeev, R., Zhang, J., Baba, M., Ozaki, T. & Wei, Z.Y. (2005). Advanced 20 TW Ti: S laser system for X-ray laser and coherent XUV generation irradiated by ultra-high intensities. Laser Part. Beams 23, 396396.Google Scholar
Lemoff, B.E., Yin, G.Y., Gordon Iii, C.L., Barty, C.P.J. & Harris, S.E. (1995). Demonstration of a 10-Hz femtosecond-pulse-driven XUV laser at 41.8 nm in Xe IX. Phys. Rev. Lett. 74, 15741577.CrossRefGoogle Scholar
Lin, J.Y. (2007). Optimization of laser propagation in optical-field-ionization plasmas for X-ray laser generation. Appl. Phys. B 86, 2529.CrossRefGoogle Scholar
Matthews, D.L., Hagelstein, P.L., Rosen, M.D., Eckart, M.J., Ceglio, N.M., Hazi, A.U., Medecki, H., MacGowan, B.J., Trebes, J.E., Whitten, B.L., et al. (1985). Demonstration of a Soft X-Ray Amplifier. Phys. Rev. Lett. 54, 110113.CrossRefGoogle ScholarPubMed
Mocek, T., Sebban, S., Bettaibi, I., Zeitoun, P., Faivre, G., Cros, B., Maynard, G., Butler, A., McKenna, C. & Spence, D. (2005). Progress in optical-field-ionization soft X-ray lasers at LOA. Laser Part. Beams 23, 351356.CrossRefGoogle Scholar
Mohideen, U., Sher, M.H., Tom, H.W.K., Aumiller, G.D., Wood, O.R. II, Freeman, R.R., Boker, J. & Bucksbaum, P.H. (1993). High intensity above-threshold ionization of He. Phys. Rev. Lett. 71, 509512.CrossRefGoogle ScholarPubMed
Morozov, A., Luo, Y., Suckewer, S., Gordon, D. & Sprangle, P. (2010). Propagation of ultrashort laser pulses in optically ionized gases. Phys. Plasmas 17, 023101.CrossRefGoogle Scholar
Nagata, Y., Midorikawa, K., Kubodera, S., Obara, M., Tashiro, H. & Toyoda, K. (1993). Soft-X-ray amplification of the Lyman-α transition by optical-field-induced ionization. Phys. Rev. Lett. 71, 37743777.CrossRefGoogle ScholarPubMed
Paulus, G.G., Becker, W., Nicklich, W. & Walther, H. (1994). Rescattering effects in above-threshold ionization: a classical model. J. Phys. B: Atom., Molecul. Opt. Phys. 27, L703.CrossRefGoogle Scholar
Penetrante, B.M. & Bardsley, J.N. (1991). Residual energy in plasmas produced by intense subpicosecond lasers. Phys. Rev. A 43, 31003113.CrossRefGoogle ScholarPubMed
Pulsifer, P., Apruzese, J.P., Davis, J. & Kepple, P. (1994). Residual energy and its effect on gain in a Lyman-α laser. Phys. Rev. A 49, 39583965.CrossRefGoogle Scholar
Rae, S.C. & Burnett, K. (1992). Possible production of cold plasmas through optical-field-induced ionization. Phys. Rev. A 46, 20772083.CrossRefGoogle ScholarPubMed
Ros, D., Jamelot, G., Carillon, A., Jaegle, P., Klisnick, A., Zeitoun, P., Rus, B., Joyeux, D., Phalippou, D. & Boussoukaya, M. (2002). State of the development of X-ray lasers and applications at LSAI. Laser Part. Beams 20, 2330.CrossRefGoogle Scholar
Rosen, M.D., Hagelstein, P.L., Matthews, D.L., Campbell, E.M., Hazi, A.U., Whitten, B.L., MacGowan, B., Turner, R.E., Lee, R.W., Charatis, G., et al. (1985). Exploding-foil technique for achieving a soft X-ray laser. Phys. Rev. Lett. 54, 106109.CrossRefGoogle ScholarPubMed
Sebban, S., Haroutunian, R., Balcou, P., Grillon, G., Rousse, A., Kazamias, S., Marin, T., Rousseau, J.P., Notebaert, L., Pittman, M., et al. (2001). Saturated Amplification of a Collisionally pumped optical-field-ionization soft X-ray laser at 41.8 nm. Phys. Rev. Lett. 86, 30043007.CrossRefGoogle ScholarPubMed
Suckewer, S., Skinner, C.H., Milchberg, H., Keane, C. & Voorhees, D. (1985). Amplification of stimulated soft X-ray emission in a confined plasma column. Phys. Rev. Lett. 55, 17531756.CrossRefGoogle Scholar
Wilks, S., Kruer, W., Williams, E., Amendt, P. & Eder, D. (1995). Stimulated Raman backscatter in ultraintense, short pulse laser–plasma interactions. Phys. Plasmas 2, 274.CrossRefGoogle Scholar
Yamaguchi, N., Fujikawa, C., Okasaka, K. & Hara, T. (2002). Production of highly ionized plasma by micro-dot array irradiation and its application to compact X-ray lasers. Laser Part. Beams 20, 7377.CrossRefGoogle Scholar