Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:24:30.173Z Has data issue: false hasContentIssue false

Effects of microstructure on shock propagation in foams

Published online by Cambridge University Press:  01 June 2004

F. PHILIPPE
Affiliation:
Département de Physique Théorique et Appliquée, Commissariat à l'Energie Atomique/DAM Ile-de-France, Bruyères-le-Châtel, France
B. CANAUD
Affiliation:
Département de Physique Théorique et Appliquée, Commissariat à l'Energie Atomique/DAM Ile-de-France, Bruyères-le-Châtel, France
X. FORTIN
Affiliation:
Département de Physique Théorique et Appliquée, Commissariat à l'Energie Atomique/DAM Ile-de-France, Bruyères-le-Châtel, France
F. GARAUDE
Affiliation:
Département de Physique Théorique et Appliquée, Commissariat à l'Energie Atomique/DAM Ile-de-France, Bruyères-le-Châtel, France
H. JOURDREN
Affiliation:
Département Sciences de la Simulation et de l'Information, Commissariat à l'Energie Atomique/DAM Ile-de-France, Bruyères-le-Châtel, France

Abstract

Foams are an important component of various inertial confinement fusion target schemes. The propagation of shock waves in foams is also an important issue for many other laser experiments (e.g., laboratory astrophysics experiments). The usual approach is to assume that the foam can be considered as a homogeneous mixture. Taking into account the effects of foam heterogeneity leads to increased shock velocity and reduced compressibility. Evidence of this effect is obtained using two-dimensional adaptive mesh refinement Eulerian numerical simulations. Nonetheless, for the very low density foams filled with DT ice used in recent direct drive target designs, the homogeneous mixture model provides adequate shock timing, density, and pressure profiles.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amendt, P., Colvin, J.D., Tipton, R.E., Hinkel, D.E., Edwards, M.J., Landen, O.L., Ramshaw, J.D., Suter, L.J., Varnum, W.S. & Watt, R.G. (2002). Phys. Plasmas 9, 2221.
Hazak, G., Velikovich, A.L., Gardner, J.H. & Dahlburg, J.P. (1998). Phys. Plasmas 5, 4357.
Jacobs, J.W. (1993). Phys. Fluids A 5, 2239.
Kotelnikov, A.D. & Montgomery, D.C. (1998). Phys. Fluids 10, 2037.
Metzler, N., Velikovich, A.L. & Gardner, J.H. (2002). Phys. Plasmas 9, 5050.
Remington, B.A., Drake, R.P., Takabe, H. & Arnett, D. (2000). Phys. Plasmas 7, 1641.
Sacks, R.A. & Darling, D.H. (1987). Nucl. Fusion 27, 447.
Tomkins, C., Prestridge, K., Rightley, P., Marr-Lyon, M., Vorobieff, P. & Benjamin (2003). Phys. Fluids 15, 986.