Article contents
Effect of self-focused rippled laser beam on the excitation of ion acoustic wave in relativistic ponderomotive regime
Published online by Cambridge University Press: 08 September 2014
Abstract
This paper presents an investigation of self-focusing of intense Gaussian rippled laser beam in collisionless plasma by including the nonlinearity associated with the relativistic mass and the ponderomotive force and its effects on the excitation of ion acoustic wave. The growth of ripple, riding on an intense Gaussian laser beam in plasma and its coupling with ion acoustic wave has also been studied. Modified coupled equations for main laser beam, growth of laser ripple in plasma, rippled laser beam, beam width, and density perturbation associated with ion acoustic wave are derived using Wentzel-Kramers-Brillouin and paraxial ray approximation. These coupled equations are solved analytically and numerically to study the laser intensity in plasma and the variation of amplitude of the ion acoustic wave for various established laser and plasma parameters. From numerical computation, it is observed that both nonlinearities significantly affected the dynamics of the growth of laser ripple in plasma, propagation of rippled laser beam as well as ion acoustic wave in plasma at high laser power flux. The growth of laser ripple increase with increase in the intensity of laser beam and due to the contribution of growth rate, intensity profile of rippled laser beam and ion acoustic wave modified accordingly.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2014
References
REFERENCES
- 6
- Cited by