Published online by Cambridge University Press: 06 August 2018
In the interaction of short-laser pulses with a solid density target, pre-plasma can play a major role in ion acceleration processes. So far, complete analysis of pre-plasma effect on the ion acceleration by ultra-short laser pulses in the radiation pressure acceleration (RPA) regime has been unknown. Then the effect of pre-plasma on the ion acceleration efficiency is analyzed by numerical results of the particle-in-cell simulation in the RPA regime. It is shown that, for long-laser pulses (τp > 50 fs), the presence of pre-plasma makes a destructive effect on ion acceleration while it may have a contributing effect for short-laser pulses (τp < 50 fs). Therefore, the 35 fs (20 fs) laser pulse can accelerate ions up to 40 MeV (55 eV), which is almost two (three) times larger in energy rather than use of a 100 fs pulse with the same pre-plasma scale length.