Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T07:35:13.799Z Has data issue: false hasContentIssue false

Effect of cathode materials on the generation of runaway electron beams and X-rays in atmospheric pressure air

Published online by Cambridge University Press:  29 May 2013

Cheng Zhang
Affiliation:
Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing, China
Victor F. Tarasenko
Affiliation:
Institute of High Current Electronics, Russian Academy of Sciences, Tomsk, Russia
Tao Shao*
Affiliation:
Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing, China
Evgeni Kh. Baksht
Affiliation:
Institute of High Current Electronics, Russian Academy of Sciences, Tomsk, Russia
Alexander G. Burachenko
Affiliation:
Institute of High Current Electronics, Russian Academy of Sciences, Tomsk, Russia
Ping Yan
Affiliation:
Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing, China
Igor' D. Kostyray
Affiliation:
Institute of High Current Electronics, Russian Academy of Sciences, Tomsk, Russia
*
Address correspondence and reprint requests to: Tao Shao, Institute of Electrical Engineering, Chinese Academy of Sciences, P.O. Box 2703, 100190 Beijing, China. E-mail: [email protected]

Abstract

In this work, experiments were performed to study the effect of cathode materials on the amplitude of the super-short avalanche electron beam (SAEB) current and X-ray density during discharges in atmospheric-pressure air. In the experiments, discharges were generated by three nanosecond-pulse generators in air gaps between a plane anode and a tubular cathode made of different metals. The output pulse of the three generators had a rise time of 0.3, 1, 15 ns, and a full width at half maximum of 1, 2, 30–40 ns, respectively. For the generators with pulse rise-time of 0.3 and 1 ns, the cathodes used in these experiments were made of stainless steel, permalloy, titanium, niobium, copper, brass, and aluminum. For the generator with pulse rise-time of 15 ns, the cathodes were made of stainless steel, titanium, copper, and aluminum. When the rise time of the applied pulse is 0.3 ns, our experimental results show that the amplitude of the voltage across the gap depends on the cathode material and reaches its maximum value when a stainless steel cathode is used. It is also observed that, under such situation, the maximum amplitudes of the SAEB current occur at maximum voltages across the gap when all other factors are equal. Furthermore, the amplitude of the SAEB current hereof is found to depend not only on the material of the sharp edge of the tubular cathode, but also on the material of the side surface of the tubular cathode. When the rise time of the applied pulse is 1 ns, the experimental results show that the average number of electrons in SAEB is also affected by the cathode materials. In addition, in the case that the rise time of the voltage pulse is 15 ns and the gap spacing is 8 cm, the experimental results show that the cathode material has no effect on the voltage amplitude across the gap and the X-ray density. The increase of the pulse repetition frequency from 250 to 500 Hz under such condition can lead to a three-fold increase in X-ray density in a repetitive pulsed mode.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alekseev, S.B., Orlovskii, V.M. & Tarasenko, V.F. (2003 a). Electron beam formed in a diode filled with air or nitrogen at atmospheric pressure. Tech. Phys. Lett. 29, 411413.CrossRefGoogle Scholar
Alekseev, S.B., Orlovskii, V.M. & Tarasenko, V.F. (2003 b). Atmospheric-pressure CO2 laser with an electron-beam-initiated discharge produced in a working mixture. Quan. Electron. 33, 10591061.CrossRefGoogle Scholar
Andreev, Yu.A., Kostyrya, I.D., Koshelev, V.I. & Tarasenko, V.F. (2006). Electromagnetic radiation of a nanosecond discharge in an open gas-filled diode. Tech. Phys. 51, 637643.CrossRefGoogle Scholar
Babich, L.P. & Loiko, T.V. (1985). Energy spectra and time parameters of the runaway electrons at a nanosecond breakdown in dense gases. Tech. Phys. 55, 956958.Google Scholar
Babich, L.P. (2003). High-energy phenomena in electric discharges in dense gases: Theory, experiment, and natural phenomena. Arlington, VA: Futurepast.Google Scholar
Babich, L.P., Becker, K.H. & Loiko, T.V. (2009). Luminescence from minerals excited by subnanosecond pulses of runaway electrons generated in an atmospheric-pressure high-voltage discharge in air. IEEE Trans. Plasma Sci. 37, 22612264.CrossRefGoogle Scholar
Baksht, E.Kh., Balzovskii, E.V., Klimov, A.I., Kurkan, I.K., Lomaev, M.I., Rybka, D.V. & Tarasenko, V.F. (2007). A collector assembly for measuring a subnanosecond — Duration electron beam current. Instr. Exper. Techn. 50, 811814.CrossRefGoogle Scholar
Baksht, E.Kh., Burachenko, A.G., Lomaev, M.I., Rybka, D.V. & Tarasenko, V.F. (2008). Generation of runaway electron subnanosecond pulses in nitrogen and helium at a voltage of 25 kV across the gap. Tech. Phys. 53, 9398.CrossRefGoogle Scholar
Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I., Rybka, D.V., Shulepov, M.A. & Tarasenko, V.F. (2009). Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application. J. Phys. D: Appl. Phys. 42, 185201.CrossRefGoogle Scholar
Baksht, E.Kh., Burachenko, A.G., Kozhevnikov, V.Y., Kozyrev, A.V., Kostyrya, I. D. & Tarasenko, V.F. (2010 a). Spectrum of fast electrons in a subnanosecond breakdown of air-filled diodes at atmospheric pressure. J. Phys. D: Appl. Phys. 43, 305201.CrossRefGoogle Scholar
Baksht, E.Kh., Burachenko, A.G. & Tarasenko, V.F. (2010 b). Pulsed catodoluminescence of diamond, calcite, spodumene, and fluorite under the action of subnanosecond electron beam. Tech. Phys. Lett. 36, 10201023.CrossRefGoogle Scholar
Bokhan, P.A. & Zakrevsky, D.E. (2010). Electron-beam generation in a wide-aperture open gas discharge: a comparative study for different inert gases. Appl. Phys. Lett. 97, 091502.CrossRefGoogle Scholar
Burachenko, A.G. & Tarasenko, V.F. (2010). Effect of nitrogen pressure on the energy of runaway electrons generated in a gas diode. Tech. Phys. Lett. 35, 11851194.Google Scholar
Ganter, R., Bakker, R.J., Dehler, M., Gobrecht, J., Gough, C., Kirk, E., Leemann, S.C., Li, K., Paraliev, M., Pedrozzi, M., Le Pimpec, F., Raguin, J.-Y., Rivkin, L., Schlott, V., Sehr, H., Tsujino, S. & Wrulich, A. (2006). High current electron emission from microscopic tips. Proceedings of FEL, BESSY, Berlin, Germany, THCAU04, 781784.Google Scholar
Fursey, G.N. (2003). Field emission in vacuum micro-electronics. Appl. Surf. Sci. 215 113134.CrossRefGoogle Scholar
Kostyrya, I.D., Tarasenko, V.F. & Shitts, D.V. (2008). SLEP-150 supershort avalanche electron beam accelerator. Prib. Tekh. Eksper. 51, 159160 (in Russian).Google Scholar
Kostyrya, I.D., Tarasenko, V.F., Baksht, E.Kh., Burachenko, I.D., Lomaev, M.I. & Rybka, D.V. (2009). Generation of subnanosecond electron beams in air at atmospheric pressure. Tech. Phys. Lett. 35, 10121015.CrossRefGoogle Scholar
Kostyrya, I.D., Baksht, E.Kh. & Tarasenko, V.F. (2010). An efficient cathode for generating a super short avalanche electron beams in air at atmospheric pressure. Instr. Exper. Techn. 53, 545548.CrossRefGoogle Scholar
Kostyrya, I.D., Rybka, D.V. & Tarasenko, V.F. (2012). The amplitude and current pulse duration of a supershort avalanche electron beam in air at atmospheric pressure. Instr. Exper. Techn. 55, 7277.CrossRefGoogle Scholar
Kozyrev, A.V., Tarasenko, V.F., Baksht, E.Kh. & Shut'ko, Yu.V. (2011). Soft X-ray generation and its role in breakdown of air gap at elevated pressure. Tech. Phys. Lett. 37, 10541057.CrossRefGoogle Scholar
Levko, D., Gurovich, V.Tz. & Krasik, Ya.E. (2012 a). Conductivity of nanosecond discharges in nitrogen and sulfur hexafluoride studied by particle-in-cell simulations. J. Appl. Phys. 111, 123303.CrossRefGoogle Scholar
Levko, D., Krasik, Ya.E. & Tarasenko, V.F. (2012 b). Present status of runaway electron generation in pressurized gases during nanosecond discharges. Internat. Rev. Phys. 6, 165195.Google Scholar
Lipatov, E.I., Tarasenko, V.F., Orlovskii, V.M., Alekseev, S.B. & Rybka, D.V. (2005 a). Luminescence of Crystals under the action of a subnanosecond electron beam. Tech. Phys. Lett. 31, 231232.CrossRefGoogle Scholar
Lipatov, E.I., Tarasenko, V.F. & Orlovskii, V.M. (2005 b). Luminescence of crystals excited by KrCl laser and subnanosecond electron beam. Quantum Electron. 35, 745748.CrossRefGoogle Scholar
Mesyats, G.A., Korovin, S.D., Sharipov, K.A., Shpak, V.G., Shunailov, S.A. & Yalandin, M.I. (2006). Dynamics of subnanosecond electron beam formation in gas-filled and vacuum diodes. Tech. Phys. Lett. 32, 1822.CrossRefGoogle Scholar
Mesyats, G.A. (2007). On a source of outgoing electrons in a pulsed gas discharge. JETP Lett. 85, 119122.CrossRefGoogle Scholar
Mesyats, G.A., Shpak, V.G., Shunailov, S.A. & Yalandin, M.I. (2008). On a source of outgoing electrons and acceleration mode of a picoseconds beam in a gas-filled diode with inhomogeneous electric field. Tech. Phys. Lett. 4, 7180.Google Scholar
Mesyats, G.A., Reutova, A.G., Sharypov, K.A., Shpak, V.G., Shunailov, S.A. & Yalandin, M.I. (2011). On the observed energy of runaway electron beams in air. Laser Part. Beams 29, 425435.CrossRefGoogle Scholar
Michaelson, H.B. (1950). Work functions of the elements. J. Appl. Phys. 21, 536540.CrossRefGoogle Scholar
Orlovskii, V.M., Alekseev, S.B. & Tarasenko, V.F. (2011). Carbon dioxide laser with an e-beam-initiated discharge produced in the working gas mixture at a pressure up to 5 atm. Quant. Electron. 41, 10331036.CrossRefGoogle Scholar
Rukin, S.N. (1999). High-power nanosecond pulse generators based on semiconductor opening switches. Instr. Exper. Techn. 42, 439467.Google Scholar
Rybka, D.V., Tarasenko, V.F., Burachenko, A.G. & Balzovskii, E.V. (2012). The temporal structure of a runaway electron beam generated in air at atmosphere pressure. Tech. Phys. Lett. 38, 653–600.CrossRefGoogle Scholar
Shao, T., Zhang, C., Niu, Z., Yan, P., Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G. & Shut'ko, Y.V. (2011 a). Diffuse discharge, runaway electron, and X-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes. Appl. Phys. Lett. 98, 021503.CrossRefGoogle Scholar
Shao, T., Zhang, C., Niu, Z., Yan, P., Tarasenko, V.F., Baksht, E.Kh., Kostyrya, I.D. & Shut'ko, Y.V. (2011 b). Runaway electron preionized diffuse discharges in atmospheric pressure air with a point-to-plane gap in repetitive pulsed mode. J. Appl. Phys. 109, 083306.CrossRefGoogle Scholar
Shao, T., Tarasenko, V.F., Zhang, C., Baksht, E.Kh., Yan, P. & Shut'ko, Yu.V. (2012). Repetitive nanosecond-pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation. Laser Part. Beams 30, 369378.CrossRefGoogle Scholar
Tarasenko, V.F., Orlovskii, V.M. & Shunailov, S.A. (2003). Forming of an electron beam and a volume discharge in air at atmospheric pressure. Russ. Phys. J. 46, 325327.CrossRefGoogle Scholar
Tarasenko, V.F., Skakun, V.S., Kostyrya, I.D., Alekseev, S.B. & Orlovskii, V.M. (2004). On formation of subnanosecond electron beams in air under atmospheric pressure. Laser Part. Beams 22, 7582.CrossRefGoogle Scholar
Tarasenko, V.F. & Yakovlenko, S.I. (2005). High-power subnanosecond beam of runaway electrons generated in dense gases. Phys.Scripta 72, 4167.CrossRefGoogle Scholar
Tarasenko, V.F., Shpak, V.G., Shunailov, S.A. & Kostyrya, I.D. (2005). Supershort electron beam from air filled diode at atmospheric pressure. Laser Part. Beams 23, 545551.CrossRefGoogle Scholar
Tarasenko, V.F. & Kostyrya, I.D. (2005). On the formation nanosecond volume discharges, subnanosecond runaway electron beams, and X–ray. Russ. Phys. J. 48, 12571259.CrossRefGoogle Scholar
Tarasenko, V.F. (2007). Effect of the amplitude and rise time of a voltage pulse on the formation of an ultrashort avalanche electron beam in a gas diode. Tech. Phys. 52, 534536.CrossRefGoogle Scholar
Tarasenko, V.F., Rybka, D.V., Baksht, E.Kh., Kostyrya, I.D. & Lomaev, M.I. (2007). On the generation of supershort avalanche electron beams and x–radiation during nanosecond discharges in dense gases (result and discussion). Russ. Phys. J. 50, 944954.CrossRefGoogle Scholar
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M. I. & Rybka, D.V. (2008 a). Supershort avalanche electron beam generation in gases. Laser. Part. Beams. 26, 605617.CrossRefGoogle Scholar
Tarasenko, V.F., Rybka, D.V., Baksht, E.Kh., Kostyrya, I.D. & Lomaev, M. I. (2008 b). Generation and measurement of subnanosecond electron beams in gas-filled diodes. Instr. Exper. Techn. 51, 213219.CrossRefGoogle Scholar
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2008 c). Generation of supershort avalanche electron beams and formation of diffuse discharges in different gases at high pressure. Plasma Dev. Oper. 16, 267298.CrossRefGoogle Scholar
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2009). Supershort avalanche electron beams in discharges in air and other gases at high pressure. IEEE Trans. Plasma Sci. 37, 832838.CrossRefGoogle Scholar
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I. & Sorokin, D.A. (2010). Modes of generation of runaway electron beams in He, H2, Ne and N2 at a pressure of 1-760 Torr. IEEE Trans. Plasma Sci. 38, 25832587.CrossRefGoogle Scholar
Tarasenko, V.F., Kostyrya, I.D., Baksht, E.Kh. & Rybka, D.V. (2011). SLEP-150M compact supershort avalanche electron beam accelerator. IEEE Trans. Dielectr. Electr. Insul. 18, 12501255.CrossRefGoogle Scholar
Tarasenko, V.F. (2011). Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air. Plasma Phys. Rep. 37, 409421.CrossRefGoogle Scholar
Tarasenko, V.F., Rybka, D.V., Burachenko, A.G., Lomaev, M.I. & Balzovsky, E.V. (2012). Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air. Rev. Sci. Instrum. 83, 086106.CrossRefGoogle ScholarPubMed
Tarasova, L.V., Khudyakova, L.N., Loiko, T.V. & Tsukerman, V.A. (1974). The fast electrons and X-Ray radiation of nanosecond pulsed discharges in gases under 0,1–760 Torr. J. Tech. Phys. 44, 564568.Google Scholar
Yakovlenko, S.I. (2007). Beams of runaway electrons and discharges in dense gases, based on a wave of multiplication of background electrons. Proc. of the Prokhorov General Institute, Moscow, Nauka, 63 (in Russian).Google Scholar
Zagulov, F.YA., Kotov, A.S., Shpak, V.G., Yurike, Ya.Ya. & Yalandin, M.I. (1989). RADAN-small-sized pulse-repetitive high-current accelerators of electrons. Prib. Tekh. Eksper. 23, 146149 (in Russian).Google Scholar
Zhang, C., Shao, T., Yu, Y., Niu, Z., Yan, P. & Zhou, Y. (2010). Detection of x-ray emission in a nanosecond discharge in air at atmospheric pressure. Rev. Sci. Instrum. 81, 123501.Google Scholar