Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:14:35.610Z Has data issue: false hasContentIssue false

Editorial from the Editor in Chief: Inertial Fusion Energy on the Horizon

Published online by Cambridge University Press:  17 December 2007

Rights & Permissions [Opens in a new window]

Abstract

Type
Editorial
Copyright
Copyright © Cambridge University Press 2007

While the current issue was under preparation, the fifth International Conference on Inertial Fusion Sciences and Applications was held at Kobe, Japan, from September 9–14, 2007. This conference has developed into the most important biannual meeting of scientists involved in fusion science and its applications. The topics addressed at this conference are also at the center of interest for readers and authors of Laser and Particle Beams. Inertial Fusion Energy is generally associated with research at major laser facilities like the National Ignition Facility (NIF) in the United States and the project Megajoule in France (Dewald et al., Reference Dewald, Landen, Suter, Schein, Holder, Campbell, Glenzer, McDonald, Niemann, Mackinnon, Schneider, Haynam, Hinkel and Hammel2006; Kilkenny et al., Reference Kilkenny, Alexander, Nikroo, Steinman, Nobile, Bernat, Cook, Letts, Takagi and Harding2005). Smaller laser facilities like the Vulcan petawatt Laser (Danson et al., Reference Danson, Brummitt, Clarke, Collier, Fell, Frackiewicz, Hawkes, Hernandez-Gomez, Holligan, Hutchinson, Kidd, Lester, Musgrave, Neely, Neville, Norreys, Pepler, Reason, Shaikh, Winstone, Wyatt and Wyborn2005), or the Prague Asterix Laser (PALS (Jungwirth, Reference Jungwirth2005; Batani et al., Reference Batani, Dezulian, Redaelli, Benocci, Stabile, Canova, Desai, Lucchini, Krousky, Masek, Pfeifer, Skala, Dudzak, Rus, Ullschmied, Malka, Faure, Koenig, Limpouch, Nazarov, Pepler, Nagai, Norimatsu and Nishimura2007), and others study specific aspects of laser matter interaction at high intensities. Especially the discovery of high energy electrons and ions accelerated in laser plasma has given a boost to this field (Flippo et al., Reference Flippo, Hegelich, Albright, Yin, Gautier, Letzring, Schollmeier, Schreiber, Schulze and Fernandez2007; Yin et al., Reference Yin, Albright, Hegelich and Fernández2006; Lifshitz et al., Reference Lifschitz, Faure, Glinec, Malka and Mora2006; Glinec et al., Reference Glinec, Faure, Pukhov, Kiselev, Gordienko, Mercier and Malka2005 Roth et al., Reference Roth, Brambrink, Audebert, Blazevic, Clarke, Cobble, Cowan, Fernandez, Fuchs, Geissel, Habs, Hegelich, Karsch, Ledingham, Neely, Ruhl, Schlegel and Schreiber2005). While laser drivers are expected to achieve ignition and gain in the laboratory, within a few years from now the route to economically feasible inertial fusion energy still remains open. Heavy ion beam drivers from accelerators offer the option of high repetition rate and efficient transformation of electric energy to kinetic energy of the beam ion, which in turn couples its energy in a very efficient way to the bulk matter of the target. Major accelerator laboratories worldwide have been and are currently still engaged in projects to investigate the potential of ion beams as drivers for inertial fusion energy.

It is obvious that significant advances have been made toward inertial fusion. Both large scale laser facilities designed to achieve ignition soon after 2010 are nearing completion. The status of the National Ignition Facility in the U.S and the MegaJoule project in France was the obvious focal point of interest, and is the subject of a large number of recent publications (Giorla et al., Reference Giorla, Poggi, Galmiche, Seytor, Quach, Cherfils, Gauthier, Laffite and Masse2007; Haynam et al., Reference Haynam, Wegner, Auerbach, Bowers, Dixit, Erbert, Heestand, Henesian, Hermann, Jancaitis, Manes, Marshall, Mehta, Menapace, Moses, Murray, Nostrand, Orth, Patterson, Sacks, Shaw, Spaeth, Sutton, Williams, Widmayer, White, Yang and Van Wonterghem2007). However, laser laboratories worldwide are participating in the effort to understand the details of beam matter interaction physics necessary to achieve the conditions of inertial fusion (Laska et al., Reference Laska, Jungwirth, Krasa, Krousky, Pfeifer, Rohlena, Ullschmied, Badziak, Parys, Wolowski, Gammino, Torrisi and Boody2006; Lontano et al., Reference Lontano, Passoni, Riconda, Tikhonchuk and Weber2006; Borghesi et al., Reference Borghesi, Audebert, Bulanov, Cowan, Fuchs, Gauthier, MacKinnon, Patel, Pretzler, Romagnani, Schiavi, Toncian and Willi2005; Schaumann et al., Reference Schaumann, Schollmeier, Rodriguez-Prieto, Blazevic, Brambrink, Geissel, Korostiy, Pirzadeh, Roth, Rosmej, Faenov, Pikuz, Tsigutkin, Maron, Tahir and Hoffmann2005). The scientific discussion for many years shows (Meyer-ter-Vehn et al., Reference Meyertervehn, Witkowski, Bock, Hoffmann, Hofmann, Muller, Arnold and Mulser1990; Funk et al., Reference Funk, Bock, Dornik, Geissel, Stetter, Stowe, Tahir and Hoffmann1998) and it was confirmed here that the target design is a most crucial issue for the experimental facilities as well as for a future full scale driver (Nobile et al., Reference Nobile, Nikroo, Cook, Cooley, Alexander, Hackenberg, Necker, Dickerson, Kilkenny, Bernat, Chen, Xu, Stephens, Huang, Haan, Forsman, Atherton, Letts, Bono and Wilson2006; Fernandez et al., Reference Fernandez, Hegelich, Cobble, Flippo, Letzring, Johnson, Gautier, Shimada, Kyrala, Wang, Wetteland and Schreiber2005; Khalenkov et al., Reference Khalenkov, Borisenko, Kondrashov, Merkuliev, Limpouch and Pimenov2006; Koresheva et al., Reference Koresheva, Osipov and Aleksandrova2005).

References

REFERENCES

Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.Google Scholar
Borghesi, M., Audebert, P., Bulanov, S.V., Cowan, T., Fuchs, J., Gauthier, JC., MacKinnon, A.J., Patel, P.K., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23, 291295.CrossRefGoogle Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, I., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan petawatt: Design, operation and interactions at 5X10(20) Wcm(-2). Laser Part. Beams 23, 8793.CrossRefGoogle Scholar
Dewald, E.L., Landen, O.L., Suter, L.J., Schein, J., Holder, J., Campbell, K., Glenzer, S.H., McDonald, J.W., Niemann, C., Mackinnon, A.J., Schneider, M.S., Haynam, C., Hinkel, D. & Hammel, B.A. (2006). First hohlraum drive studies on the national ignition facility. Phys. Plasmas 13, 056315.Google Scholar
Fernandez, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y.Q., Wetteland, C.J. & Schreiber, J. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser Part. Beams 23, 267273.Google Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.Google Scholar
Funk, U.N., Bock, R., Dornik, M., Geissel, M., Stetter, M., Stowe, S., Tahir, N. & Hoffmann, D.H.H. (1998). High energy density in solid rare gas targets and solid hydrogen. Nuclear Instr. Meth. Phys. Res. 415, 6874.CrossRefGoogle Scholar
Giorla, J., Poggi, F., Galmiche, D., Seytor, P., Quach, R., Cherfils, C., Gauthier, P., Laffite, S. & Masse, L. (2007). Sensitivity of laser megajoule ignition targets to technological defects. Fusion Sci. Techn. 51, 514518.CrossRefGoogle Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. 2005. Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.CrossRefGoogle Scholar
Haynam, C.A., Wegner, P.J., Auerbach, J.M., Bowers, M.W., Dixit, S.N., Erbert, G.V., Heestand, G.M., Henesian, M.A., Hermann, M.R., Jancaitis, K.S., Manes, K.R., Marshall, C.D., Mehta, N.C., Menapace, J., Moses, E., Murray, J.R., Nostrand, M.C., Orth, C.D., Patterson, R., Sacks, R.A., Shaw, M.J., Spaeth, M., Sutton, S.B., Williams, W.H., Widmayer, C.C., White, R.K., Yang, S.T. & Van Wonterghem, B.M. (2007). National ignition facility laser performance status. Appl. Opt. 46, 32763303.CrossRefGoogle ScholarPubMed
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.Google Scholar
Khalenkov, AM., Borisenko, NG., Kondrashov, VN., Merkuliev, YA., Limpouch, J., Pimenov, VG. (2006). Experience of micro-heterogeneous target fabrication to study energy transport in plasma near critical density. Laser Part. Beams 24, 283290.Google Scholar
Kilkenny, J.D., Alexander, N.B., Nikroo, A., Steinman, D.A., Nobile, A., Bernat, T, Cook, R., Letts, S., Takagi, M. & Harding, D. (2005). Laser targets compensate for limitations in inertial confinement fusion drivers. Laser Part. Beams 23, 475482.Google Scholar
Koresheva, E.R., Osipov, I.E. & Aleksandrova, I.V. (2005). Free standing target technologies for inertial fusion energy: Target fabrication, characterization, and delivery. Laser Part. Beams 23, 563571.CrossRefGoogle Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L. & Boody, FP. (2006). Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions. Laser Part. Beams 24, 175179.Google Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact Gev laser plasma accelerator. Laser Part. Beams 24, 255.CrossRefGoogle Scholar
Lontano, M., Passoni, M., Riconda, C., Tikhonchuk, V.T. & Weber, S. (2006). Electromagnetic solitary waves in the saturation regime of stimulated Brillouin backscattering. Laser Part. Beams 24, 125129.Google Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G., Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Meyertervehn, J., Witkowski, S., Bock, R., Hoffmann, D.H.H., Hofmann, I., Muller, R.W., Arnold, R. & Mulser, P. (1990). Accelerator and target studies for heavy-ion fusion at the Gesellschaft-Fur-Schwerionenforschung. Phys. Fluids B-Plasma Phy. 2, 13131317.Google Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.J., Kuehl, T., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23, 385389.CrossRefGoogle Scholar
Nobile, A., Nikroo, A., Cook, R.C., Cooley, J.C., Alexander, D.J., Hackenberg, R.E., Necker, C.T., Dickerson, R.M., Kilkenny, J.L., Bernat, T.P., Chen, K.C., Xu, H., Stephens, R.B., Huang, H., Haan, S.W., Forsman, A.C., Atherton, L.J., Letts, S.A., Bono, M.J. & Wilson, D.C. (2006). Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the national ignition facility. Laser Part. Beams 24, 567578.Google Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernández, J.C. (2006). GeV laser ion acceleration from Ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291.Google Scholar