Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T03:04:00.098Z Has data issue: false hasContentIssue false

Easy spectrally tunable highly efficient X-ray backlighting schemes based on spherically bent crystals

Published online by Cambridge University Press:  01 July 2004

T. PIKUZ
Affiliation:
Multicharged Ions Spectra Data Center of National Research Institute of Physical Technical and Radiotechnical Measurements, Mendeleyev, Moscow, Russia
A. FAENOV
Affiliation:
Multicharged Ions Spectra Data Center of National Research Institute of Physical Technical and Radiotechnical Measurements, Mendeleyev, Moscow, Russia
I. SKOBELEV
Affiliation:
Multicharged Ions Spectra Data Center of National Research Institute of Physical Technical and Radiotechnical Measurements, Mendeleyev, Moscow, Russia
A. MAGUNOV
Affiliation:
Multicharged Ions Spectra Data Center of National Research Institute of Physical Technical and Radiotechnical Measurements, Mendeleyev, Moscow, Russia
L. LABATE
Affiliation:
Intense Laser Irradiation Laboratory, Istituto per i Processi Chimico-Fsisici, Consiglio Nazionale delle Recherché, Area della Ricerca di Pisa, Pisa, Italy
L.A. GIZZI
Affiliation:
Intense Laser Irradiation Laboratory, Istituto per i Processi Chimico-Fsisici, Consiglio Nazionale delle Recherché, Area della Ricerca di Pisa, Pisa, Italy
M. GALIMBERTI
Affiliation:
Intense Laser Irradiation Laboratory, Istituto per i Processi Chimico-Fsisici, Consiglio Nazionale delle Recherché, Area della Ricerca di Pisa, Pisa, Italy
A. ZIGLER
Affiliation:
Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
G. BALDACCHINI
Affiliation:
Ente per le nuove technologie l'energia e l'ambiente, Unita' Technico Scientifica Tecnologie Fisiche Avanzate, C.R. Frascati, Rome, Italy
F. FLORA
Affiliation:
Ente per le nuove technologie l'energia e l'ambiente, Unita' Technico Scientifica Tecnologie Fisiche Avanzate, C.R. Frascati, Rome, Italy
S. BOLLANTI
Affiliation:
Ente per le nuove technologie l'energia e l'ambiente, Unita' Technico Scientifica Tecnologie Fisiche Avanzate, C.R. Frascati, Rome, Italy
P. DI LAZZARO
Affiliation:
Ente per le nuove technologie l'energia e l'ambiente, Unita' Technico Scientifica Tecnologie Fisiche Avanzate, C.R. Frascati, Rome, Italy
D. MURRA
Affiliation:
Ente per le nuove technologie l'energia e l'ambiente, Unita' Technico Scientifica Tecnologie Fisiche Avanzate, C.R. Frascati, Rome, Italy
G. TOMASSETTI
Affiliation:
Istituto Nazionale per la Fisica della Materia, Dipartamento di Fisica dell'Aquila and Laboratory Nazionale del Gran Sasso, Istituto Nazionale di Fisica Nucleare, Assergi, Italy
A. RITUCCI
Affiliation:
Istituto Nazionale per la Fisica della Materia, Dipartamento di Fisica dell'Aquila and Laboratory Nazionale del Gran Sasso, Istituto Nazionale di Fisica Nucleare, Assergi, Italy
A. REALE
Affiliation:
Istituto Nazionale per la Fisica della Materia, Dipartamento di Fisica dell'Aquila and Laboratory Nazionale del Gran Sasso, Istituto Nazionale di Fisica Nucleare, Assergi, Italy
L. REALE
Affiliation:
Istituto Nazionale per la Fisica della Materia, Dipartamento di Fisica dell'Aquila and Laboratory Nazionale del Gran Sasso, Istituto Nazionale di Fisica Nucleare, Assergi, Italy
M. FRANCUCCI
Affiliation:
Istituto Nazionale per la Fisica della Materia, Universitó di Roma Tor Vergata, Roma, Italy
S. MARTELLUCI
Affiliation:
Istituto Nazionale per la Fisica della Materia, Universitó di Roma Tor Vergata, Roma, Italy
G. PETROCELLI
Affiliation:
Istituto Nazionale per la Fisica della Materia, Universitó di Roma Tor Vergata, Roma, Italy

Abstract

New easy spectrally tunable backlighting schemes based on a spherically bent crystal are considered. Contrary to traditional backlighting scheme, in which the investigated objects should be placed between the backlighter and the crystal, for the considered schemes an object is placed downstream of the crystal, before the tangential or after the sagittal focus and an image of the object is recorded at the distance from the object corresponding to the needed magnification. The magnification is defined by the ratio of the distances from the sagittal focus to the detector and from the object to the sagittal focus. A ray-tracing modeling and experimental images of test meshes, obtained at incidence angles of the backlighter radiation of 10° and 22°, are presented. It is demonstrated that a simple linear transformation of the obtained astigmatic images allows reconstructing them as a stigmatic with an accuracy of 5–15%. For the spectral range around 9 Å a spatial resolution about 10 μm in a field of view of some square millimeters is achieved experimentally and confirmed by ray-tracing simulations.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aglitskiy, Y., Lehechka, T., Deniz, A., Hardgrove, J., Seely, J., Brown, C., Feldman, U., Pawley, C., Gerber, K., Bodner, S., Obenschain, S., Lehmberg, R., McLean, E., Pronko, M., Sethian, J., Stamper, J., Schmitt, A., Sullivan, C., Holland, G. & Laming, M. (1996). X-ray emission from plasmas created by smoothed KrF laser irradiation. Phys. Plasmas 3, 34383447.Google Scholar
Aglitskiy, Y., Lehechka, T., Deniz, A. Hardgrove, J., Seely, J., Brown, C., Feldman, U., Pawley, C., Gerber, K., Bodner, S., Obenschain, S., Lehmberg, R., McLean, E., Pronko, M., Sethian, J., Stamper, J., Schmitt, A., Sullivan, C., Holland G. & Laming, M. (1997). X-ray spectroscopy of plasmas created by the Nike KrF laser. Rev. Sci. Instrum. 68, 806809.Google Scholar
Aglitskiy, Y., Lehechka, T., Obenschain, S., Bodner, S., Pawley, C., Gerber, K., Sethian, J., Brown, C.M., Seely, J., Feldman, U. & Holland, G. (1998). High-resolution monochromatic X-ray imaging system based on spherically bent crystals. Appl. Opt. 37, 52535361.Google Scholar
Aglitskiy, Y., Lehechka, T., Obenschain, S., Pawley, C., Brown, C.M. & Seely, J. (1999). X-ray crystal imagers for inertial confinement fusion experiments. Rev. Sci. Instrum. 70, 530535.Google Scholar
Aglitskiy, Y., Velikovich, A.L., Karasik, M., Serlin, V., Pawely, C.J., Schmitt A.J., Obenschain, S.P., Mostovych, A.N., Gardner, J.H., &Metzler, N. (2001a). Direct observation of mass oscillations due to ablative Richtmyer–Meshkov instability in plastic targets. Phys. Rev. Lett. 87, 265001.Google Scholar
Aglitskiy, Y., Velikovich, A.L., Karasik, M., Serlin, V., Pawely, C.J., Schmitt A.J., Obenschain, S.P., Mostovych, A.N., Gardner, J.H., &Metzler, N. (2001b). Direct observation of feedout-related mass oscillations in plastic targets. Phys. Rev. Lett. 87, 265002.Google Scholar
Belyaev, L.M., Gil'varg, A.B., Mikhailov, Yu.A., Pikuz, S.A., Sklizkov, G.V., Faenov, A.Ya. & Fedotov, S.I. (1976). X-ray photography of laser plasmas with the aid of analyzer crystals bent to form second-order surfaces. Sov. J. Quantum Electron. 6, 11211122.Google Scholar
Bollanti, S., Cotton, R., Di Lazzaro, P., Flora, F., Letardi, T., Lisi, N., Batani, D., Conti, A., Mauri, A., Palladino, L., Reale, A., Belli, M., Ivanzini, F., Scafati, A., Reale, L., Tabocchini, A., Faenov, A.Ya., Pikuz, T.A. & Osterheld, A. (1996). The development and characterization of an XeCl excimer laser generated soft X-ray plasma source and its applications. Il Nuovo Cimento 18D, 12411255.Google Scholar
Bollanti, S., Albertano, P., Belli, M., Di Lazzaro, P., Faenov, A.Ya., Flora, F., Giordano, G., Grilli, A., Ivanzini, F., Kukhlevsky, S.V., Letardi, T., Nottola, A., Palladino, L., Pikuz, T., Reale, A., Reale, L., Scafati, A., Tabocchini, A., Turcu, I.C.E., Vigli-Papadaki, K. & Schina, G. (1998). Soft X-ray plasma source for atmospheric pressure microscopy, radiobiology and other applications. Il Nuovo Cimento 20D, 16851701.Google Scholar
Brown, C., Seely, J., Feldman, U., Obenschain, S., Bodner, S., Pawley, C., Gerber, K., Serlin, V., Sethian, J., Aglitskiy, Y., Lehechka, T. & Holland, G. (1997). X-ray imaging of targets irradiated by the Nike KrF laser. Rev. Sci. Instrum. 68, 10991102.Google Scholar
Flora, F., Bollanti, S., Lai, A., Di Lazzaro, P., Letardi, T., Grilli, A., Palladino, L., Tomassetti, G., Reale, A., Reale, L., Scafati, A., Bacchetta, L., Alianelli, L., Sanchez del Rio, M., Pikuz, T.A. & Faenov, A.Ya. (2001). A novel portable, high-luminosity monochromatically tuneable X-ray microscope. Proc. SPIE 4504, 240252.Google Scholar
Fraenkel, M., Zigler, A., Faenov, A.Ya. & Pikuz, T.A. (1999). Large-field high-resolution X-ray monochromatic microscope, based on spherical crystal and high-repetition-rate femtosecond laser-produced plasma. Physica Scripta 59, 246249.Google Scholar
Hölzer, G., Wehrhan, O., Heinisch, J., Foerster, E., Pikuz, T.A., Faenov, A.Ya., Pikuz, S.A., Romanova, V.M. & Shelkovenko, T.A. (1998). Flat and spherically bent muscovite mica crystals for X-ray spectroscopy. Physica Scripta 57, 301309.Google Scholar
Koch, J.A., Landen, O.L., Barbee_Jr., T.W., Celliers, P., Da Silva, L.B., Glendinning, S.G., Hammel, B.A., Kalantar, D.H., Brown, C., Seely, J., Bennett, G.R. & Hsing, W. (1998). High-energy X-ray microscopy techniques for laser–fusion plasma research at the National Ignition Facility. Appl. Opt. 37, 17841795.Google Scholar
Koch, J.A., Landen, O.L., Hammel, B.A., Brown, C.M., Seely, J. & Aglitskiy, Y. (1999). Recent progress in high-energy, high-resolution X-ray imaging techniques for application to the National Ignition Facility. Rev. Sci. Instrum. 70, 525529.Google Scholar
Koch, J.A., Aglitskiy, Y., Brown, C., Freeman, R., Hatchett, S., Holland, G., Key, M., MacKinnon, A., Seely, J., Snavely, R., Stephens, R. (2003). 4.5- and 8-keV emission and absorption X-ray imaging using spherically bent quartz 203 and 211 crystals. Rev. Sci. Instrum. 74, 2130.Google Scholar
Labate, L., Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L.A., Laville, P. & Tomassini, P. (2004). Ray-tracing simulation of an X-ray optics based upon a bent crystal for differential absorption applications. Laser Part. Beams 22, 253259.Google Scholar
Missalla, T., Uschmann, I., Förster, E., Jenke, G. & von der Linde, D. (1999). Monochromatic focusing of subpicosecond X-ray pulses in the keV range. Rev. Sci. Instrum. 70, 12881299.Google Scholar
Pikuz, S.A., Shelkovenko, T.A., Hammer, D.A., Faenov, A.Ya., Pikuz, T.A., Dyakin, A.Ya. & Romanova, V.M. (1995a). High luminosity monochromatic X-ray backlighting using an incoherent plasma source to study extremely dense plasmas. J. Exp. Theor. Phys. Lett. 61, 638644.Google Scholar
Pikuz, T.A., Faenov, A.Ya., Pikuz, S.A., Romanova, V.M. & Shelkovenko, T.A. (1995b). Bragg X-ray optics for imaging spectroscopy of plasma microsources. J. X-ray Sci. Technol. 5, 323340.Google Scholar
Pikuz, S.A., Shelkovenko, T.A., Romanova, V.M., Hammer, D.A., Faenov, A.Ya., Dyakin, V.M. & Pikuz, T.A. (1997). High luminosity monochromatic X-ray backlighting using an incoherent plasma source to study extremely dense plasmas. Rev. Sci. Instrum. 68, 740744.Google Scholar
Pikuz, T.A., Faenov, A.Ya., Fraenkel, M., Zigler, A., Flora, F., Bollanti, S., Di Lazzaro, P., Letardi, T., Grilli, A., Palladino, L., Tomassetti, G., Reale, A., Reale, L., Limongi, T. & Bonfigli, F. (1999). Large-field high resolution X-ray monochromatic microscope, based on spherical crystal and high-repetition-rate laser-produced plasmas. Proc. SPIE 3767, 6779.Google Scholar
Pikuz, T.A., Faenov, A.Ya., Fraenkel, M., Zigler, A., Flora, F., Bollanti, S., Di Lazzaro, P., Letardi, T., Grilli, A., Palladino, L., Tomassetti, G., Reale, A., Reale, L., Scafati, A., Limongi, T., Bonfigli, F., Alianelli, L. & Sanchez del Rio, M. (2001). Shadow monochromatic backlighting: Large-field high resolution X-ray shadowgraphy with improved spectral tunability. Laser Part. Beams 19, 285293.Google Scholar
Sanchez del Rio, M., Faenov, A.Ya., Dyakin, V.M., Pikuz, T.A., Pikuz, S.A., Romanova, V.M. & Shelkovenko, T.A. (1997). Ray-tracing for a monochromatic X-ray backlighting scheme, based on spherically bent crystal. Physica Scripta 55, 735.Google Scholar
Sanchez del Rio, M., Fraenkel, M., Zigler, A., Faenov, A.Ya. & Pikuz, T.A. (1999). Collimation of plasma produced X-rays by spherical crystals: Ray-tracing simulations and experimental results. Rev. Sci. Instrum. 70, 16141620.Google Scholar
Sanchez del Rio, M., Alianelli, L., Pikuz, T.A., Faenov A.Ya. (2001). A novel imaging X-ray microscope based on a spherical crystal. Rev. Sci. Instrum. 72, 32913303.Google Scholar
Sinars, D.B., Cuneo, M.E., Bennett, G.R., Wenger, D.F., Ruggles, L.E., Vargas, M.F., Porter, J.L., Admas, R.G., Johnson, D.W., Keller, K.L., Rambo, P.K., Rovang, D.C., Seamen, H., Simpson, W.W., Smith, I.C. & Speas, S.C. (2003a). Monochromatic X-ray backlighting of wire-array z-pinch plasmas using spherically bent quartz crystals. Rev. Sci. Instrum. 74, 22022205.Google Scholar
Sinars, D.B., Bennett, G.R., Wenger, D.F., Cuneo, M.E. & Porter, J.L. (2003b). Evaluation of bent-crystal X-ray backlighting and microscopy techniques for the Sandia Z-machine. Appl. Opt. 42, 40594071.Google Scholar
Uschmann, I., Fujita, K., Niki, I., Butzbach, R., Nishimura, H., Funakura, J., Nakai, M., Forster, E. & Mima, K. (2000). Time-resolved ten-channel monochromatic imaging of inertial confinement fusion plasmas. Appl. Opt. 39, 58655871.Google Scholar
Vollbrecht, M., Treichel, O., Uschmann, I., Gabel, K., Lebert, R. & Forster, E. (1998). Soft-x-ray imaging with torroidally curved thallium acid phthalate crystals in the water window. Appl. Opt. 37, 18031807.Google Scholar
Workman, J., Tierney, T., Evans, S., Kyrala, G. & Benage_Jr., J. (1999). One-dimensional X-ray microscope for shock measurements in high-density aluminum plasmas. Rev. Sci. Instrum. 70, 613616.Google Scholar
Workman, J., Evans, S. & Kyrala, G.A. (2001). One-dimensional X-ray imaging using spherically bent mica crystal at 4.75 keV. Rev. Sci. Instrum. 72, 674677.Google Scholar