Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T01:16:32.521Z Has data issue: false hasContentIssue false

Dynamics of nanometer-scale foil targets irradiated with relativistically intense laser pulses

Published online by Cambridge University Press:  04 October 2011

R. Hörlein
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Fakultät für Physik, Ludwig-Maximilians-Universität München, Garching, Germany
S. Steinke*
Affiliation:
Max-Born-Institut, Berlin, Germany
A. Henig
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Fakultät für Physik, Ludwig-Maximilians-Universität München, Garching, Germany
S.G. Rykovanov
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Fakultät für Physik, Ludwig-Maximilians-Universität München, Garching, Germany
M. Schnürer
Affiliation:
Max-Born-Institut, Berlin, Germany
T. Sokollik
Affiliation:
Max-Born-Institut, Berlin, Germany
D. Kiefer
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Fakultät für Physik, Ludwig-Maximilians-Universität München, Garching, Germany
D. Jung
Affiliation:
Fakultät für Physik, Ludwig-Maximilians-Universität München, Garching, Germany Los Alamos National Laboratory, Los Alamos, New Mexico
X.Q. Yan
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany State Key Lab of Nuclear Physics and Technology, Peking University, Bejing, China
T. Tajima
Affiliation:
Fakultät für Physik, Ludwig-Maximilians-Universität München, Garching, Germany Photomedical Research Center, JAEA, Kyoto, Japan
J. Schreiber
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Fakultät für Physik, Ludwig-Maximilians-Universität München, Garching, Germany
M. Hegelich
Affiliation:
Fakultät für Physik, Ludwig-Maximilians-Universität München, Garching, Germany Los Alamos National Laboratory, Los Alamos, New Mexico
P.V. Nickles
Affiliation:
Max-Born-Institut, Berlin, Germany Gwangju Institute of Science and Technology, GIST, Gwangju, Republic of Korea
M. Zepf
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Department of Physics and Astronomy, Queens University Belfast, Belfast, United Kingdom
G.D. Tsakiris
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany
W. Sandner
Affiliation:
Max-Born-Institut, Berlin, Germany
D. Habs
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Fakultät für Physik, Ludwig-Maximilians-Universität München, Garching, Germany
*
Address correspondence and reprint requests to: S. Steinke, Max-Born-Institut, D-12489 Berlin, Germany. E-mail: [email protected]

Abstract

In this paper we report on an experimental study of high harmonic radiation generated in nanometer-scale foil targets irradiated under normal incidence. The experiments constitute the first unambiguous observation of odd-numbered relativistic harmonics generated by the v × B component of the Lorentz force verifying a long predicted property of solid target harmonics. Simultaneously the observed harmonic spectra allow in-situ extraction of the target density in an experimental scenario which is of utmost interest for applications such as ion acceleration by the radiation pressure of an ultraintense laser.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A.A., Steinke, S., Sokollik, T., Schnürer, M., Ter Avetsiyan, S., Platonov, K.Y. & Nickles, P.V. (2009). Optimal ion acceleration from ultrathin foils irradiated by a profiled laser pulse of relativistic intensity. Phys. Plasmas 16, 013103.CrossRefGoogle Scholar
Baeva, T., Gordienko, S. & Pukhov, A. (2006). Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404.CrossRefGoogle ScholarPubMed
Baeva, T., Gordienko, S. & Pukhov, A. (2007). Relativistic plasma control for single attosecond pulse generation: Theory, simulations, and structure of the pulse. Laser Part. Beams 25, 339346.CrossRefGoogle Scholar
Bin, J.H., Lei, A.L., Yang, X.Q., Huang, L.G., Yu, M.Y., Yu, W. & Tanaka, K.A. (2009). Quasi-monoenergetic proton beam generation from a double-layer solid target using an intense circularly polarized laser. Laser Part. Beams 27, 485490.CrossRefGoogle Scholar
Blanc, P., Audebert, P., Falliès, F., Geindre, J.P., Gauthier, J.C., Santos, A.D., Mysyrowicz, A. & Antonetti, A. (1996). Phase dynamics of reflected probe pulses from sub-100-fs laser-produced plasmas. J. Opt. Soc. Am. B 13, 118124.CrossRefGoogle Scholar
Bulanov, S.V., Naumova, N.M. & Pegoraro, F. (1994). Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745757.CrossRefGoogle Scholar
Dromey, B., Adams, D., Hörlein, R., Nomura, Y., Rykovanov, S.G., Carroll, D.C., Foster, P.S., Kar, S., Markey, K., Mckenna, P., Neely, D., Geissler, M., Tsakiris, G.D., & Zepf, M. (2009). Diffraction-limited performance and focusing of high harmonics from relativistic plasmas. Nat Phys 5, 146152.CrossRefGoogle Scholar
Dromey, B., Kar, S., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kneip, S., Markey, K., Nagel, S.R., Simpson, P.T., Willingale, L., Mckenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2007). Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99, 085001.CrossRefGoogle ScholarPubMed
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003.CrossRefGoogle ScholarPubMed
George, H., Quéré, F., Thaury, C., Bonnaud, G. & Martin, P. (2009). Mechanisms of forward laser harmonic emission from thin overdense plasmas. New J. Phys. 11, 113028.CrossRefGoogle Scholar
Gibbon, P. (2005) Short Pulse Laser Interactions with Matter. London: Imperial College Press.CrossRefGoogle Scholar
Henig, A., Steinke, S., Schnürer, M., Sokollik, T., Hoerlein, R., Kiefer, D., Jung, D., Schreiber, J., Hegelich, B.M., Yan, X.Q., Meyer-Ter-Vehn, J., Tajima, T., Nickles, P.V., Sandner, W. & Habs, D. (2009). Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003.CrossRefGoogle ScholarPubMed
Hörlein, R., Rykovanov, S., Dromey, B., Nomura, Y., Tzallas, P., Adams, D., Geissler, M., Zepf, M., Krausz, F. & Tsakiris, G.D. (2009). Controlling the divergence of high harmonics from solid targets: A route toward coherent harmonic focusing. Eur. Phys. J. D 55, 475481.CrossRefGoogle Scholar
Hörlein, R., Nomura, Y., Tzallas, P., Rykovanov, S.G., Dromey, B., Osterhoff, J., Major, Z., Karsch, S., Veisz, L., Zepf, M., Charalambidis, D., Krausz, F. & Tsakiris, G.D. (2010). Temporal characterization of attosecond pulses emitted from solid-density plasmas. New J. Phys. 12.CrossRefGoogle Scholar
Klimo, O., Psikal, J., Limpouch, J. & Tikhonchuk, V.T. (2008). Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. ST Accel. Beams 11, 031301.CrossRefGoogle Scholar
Kruer, W.L. (1988). The Physics of Laser Plasma Interactions. Redwood City: Addison-Wesley.Google Scholar
Krushelnick, K., Rozmus, W., Wagner, U., Beg, F.N., Bochkarev, S.G., Clark, E.L., Dangor, A.E., Evans, R.G., Gopal, A., Habara, H., Mangles, S.P.D., Norreys, P.A., Robinson, A.P.L., Tatarakis, M., Wei, M.S. & Zepf, M. (2008). Effect of relativistic plasma on extreme-ultraviolet harmonic emission from intense laser-matter interactions. Phys. Rev. Lett. 100, 125005.CrossRefGoogle ScholarPubMed
Nomura, Y., Hörlein, R., Tzallas, P., Dromey, B., Rykovanov, S., Major, Z., Osterhoff, J., Karsch, S., Veisz, L., Zepf, M., Charalambidis, D., Krausz, F. & Tsakiris, G.D. (2009). Attosecond phase locking of harmonics emitted from laser-produced plasmas. Nat. Phys. 5, 124128.CrossRefGoogle Scholar
Price, D.F., More, R.M., Walling, R.S., Guethlein, G., Shepherd, R.L., Stewart, R.E. & White, W.E. (1995). Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1–1000 eV. Phys. Rev. Lett. 75, 252.CrossRefGoogle ScholarPubMed
Quéré, F., Thaury, C., Monot, P., Dobosz, S., Martin, P., Geindre, J.P. & Audebert, P. (2006). Coherent Wake Emission of High-Order Harmonics from Overdense Plasmas. Phys. Rev. Lett. 96, 125004.CrossRefGoogle ScholarPubMed
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 013021.CrossRefGoogle Scholar
Rykovanov, S.G., Geissler, M., Meyer-Ter-Vehn, J. & Tsakiris, G.D. (2008). Intense single attosecond pulses from surface harmonics using the polarization gating technique. New J. Phys. 10, 025025.CrossRefGoogle Scholar
Sheng, Z.M., Mima, K., Zhang, J. & Sanuki, H. (2005). Emission of electromagnetic pulses from laser wakefields through linear mode conversion. Phys. Rev. Lett. 94, 095003.CrossRefGoogle ScholarPubMed
Shoucri, M. & Afeyan, B. (2010). Studies of the interaction of an intense laser beam normally incident on an overdense plasma. Laser Part. Beams 28, 129147.CrossRefGoogle Scholar
Steinke, S., Henig, A., Schnürer, M., Sokollik, T., Nickles, P.V., Jung, D., Kiefer, D., Hörlein, R., Schreiber, J., Tajima, T., Yan, X.Q., Hegelich, M., Meyer-Ter-Vehn, J., Sandner, W. & Habs, D. (2010). Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser Part. Beams 28, 215221.CrossRefGoogle Scholar
Tarasevitch, A., Lobov, K., Wünsche, C. & Von Der Linde, D. (2007). Transition to the relativistic regime in high order harmonic generation. Phys. Rev. Lett. 98, 103902.CrossRefGoogle Scholar
Tatarakis, M., Watts, I., Beg, F.N., Clark, E.L., Dangor, A.E., Gopal, A., Haines, M.G., Norreys, P.A., Wagner, U., Wei, M.S., Zepf, M. & Krushelnick, K. (2002). Laser technology: Measuring huge magnetic fields. Nature 415, 280–280.CrossRefGoogle ScholarPubMed
Teubner, U., Eidmann, K., Wagner, U., Andiel, U., Pisani, F., Tsakiris, G.D., Witte, K., Meyer-Ter-Vehn, J., Schlegel, T. & Foerster, E. (2004). Harmonic emission from the rear side of thin overdense foils irradiated with intense ultrashort laser pulses. Phys. Rev. Lett. 92, 185001.CrossRefGoogle ScholarPubMed
Teubner, U. & Gibbon, P. (2009). High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445.CrossRefGoogle Scholar
Tsakiris, G.D., Eidmann, K., Meyer-Ter-Vehn, J. & Krausz, F. (2006). Route to intense single attosecond pulses. New J. Phys. 8, 19.CrossRefGoogle Scholar
Yan, X.Q., Lin, C., Sheng, Z.M., Guo, Z.Y., Liu, B.C., Lu, Y.R., Fang, J. X. & Chen, J.E. (2008). Generating High-Current Monoenergetic Proton Beams by a Circularly Polarized Laser Pulse in the Phase-Stable Acceleration Regime. Phys. Rev. Lett. 100, 135003.CrossRefGoogle ScholarPubMed